Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivia Osborn is active.

Publication


Featured researches published by Olivia Osborn.


Nature Medicine | 2012

The cellular and signaling networks linking the immune system and metabolism in disease

Olivia Osborn; Jerrold M. Olefsky

It is now recognized that obesity is driving the type 2 diabetes epidemic in Western countries. Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes and cardiovascular disease, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various cellular and signaling networks that participate in linking the immune and metabolic systems together have contributed to understanding of the pathogenesis of metabolic diseases and may also inform new therapeutic strategies based on immunomodulation. Here we discuss how these various networks underlie the etiology of the inflammatory component of insulin resistance, with a particular focus on the central roles of macrophages in adipose tissue and liver.


Nature Medicine | 2015

Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance

Sungsoon Fang; Jae Myoung Suh; Shannon M. Reilly; Elizabeth Yu; Olivia Osborn; Denise Lackey; Eiji Yoshihara; Alessia Perino; Sandra Jacinto; Yelizaveta Lukasheva; Annette R. Atkins; Alexander Khvat; Bernd Schnabl; Ruth T. Yu; David A. Brenner; Sally Coulter; Christopher Liddle; Kristina Schoonjans; Jerrold M. Olefsky; Alan R. Saltiel; Michael Downes; Ronald M. Evans

The systemic expression of the bile acid (BA) sensor farnesoid X receptor (FXR) has led to promising new therapies targeting cholesterol metabolism, triglyceride production, hepatic steatosis and biliary cholestasis. In contrast to systemic therapy, bile acid release during a meal selectively activates intestinal FXR. By mimicking this tissue-selective effect, the gut-restricted FXR agonist fexaramine (Fex) robustly induces enteric fibroblast growth factor 15 (FGF15), leading to alterations in BA composition, but does so without activating FXR target genes in the liver. However, unlike systemic agonism, we find that Fex reduces diet-induced weight gain, body-wide inflammation and hepatic glucose production, while enhancing thermogenesis and browning of white adipose tissue (WAT). These pronounced metabolic improvements suggest tissue-restricted FXR activation as a new approach in the treatment of obesity and metabolic syndrome.


Trends in Pharmacological Sciences | 2011

Targeting GPR120 and other fatty acid sensing GPCRs ameliorates insulin resistance and inflammatory diseases

Saswata Talukdar; Jerrold M. Olefsky; Olivia Osborn

The past decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of G-protein-coupled receptors (GPCRs). Free fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review paper, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease.


Journal of Clinical Investigation | 2011

Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction

Simon Schenk; Carrie E. McCurdy; Andrew Philp; Mark Z. Chen; Michael J. Holliday; Gautum K. Bandyopadhyay; Olivia Osborn; Keith Baar; Jerrold M. Olefsky

Skeletal muscle insulin resistance is a key component of the etiology of type 2 diabetes. Caloric restriction (CR) enhances the sensitivity of skeletal muscle to insulin. However, the molecular signals within skeletal muscle linking CR to improved insulin action remain largely unknown. Recently, the mammalian ortholog of Sir2, sirtuin 1 (Sirt1), has been identified as a potential transducer of perturbations in cellular energy flux into subsequent metabolic adaptations, including modulation of skeletal muscle insulin action. Here, we have demonstrated that CR increases Sirt1 deacetylase activity in skeletal muscle in mice, in parallel with enhanced insulin-stimulated phosphoinositide 3-kinase (PI3K) signaling and glucose uptake. These adaptations in skeletal muscle insulin action were completely abrogated in mice lacking Sirt1 deacetylase activity. Mechanistically, Sirt1 was found to be required for the deacetylation and inactivation of the transcription factor Stat3 during CR, which resulted in decreased gene and protein expression of the p55α/p50α subunits of PI3K, thereby promoting more efficient PI3K signaling during insulin stimulation. Thus, these data demonstrate that Sirt1 is an integral signaling node in skeletal muscle linking CR to improved insulin action, primarily via modulation of PI3K signaling.


Cytokine | 2008

Treatment with an Interleukin 1 beta antibody improves glycemic control in diet-induced obesity

Olivia Osborn; Sara E. Brownell; Manuel Sanchez-Alavez; Daniel R. Salomon; H. Gram; Tamas Bartfai

The proinflammatory cytokine Interleukin 1 beta (IL-1beta) is elevated in obese individuals and rodents and it is implicated in impaired insulin secretion, decreased cell proliferation and apoptosis of pancreatic beta cells. In this study we describe the therapeutic effects by an IL-1beta antibody to improve glucose control in hyperglycemic mice with diet-induced obesity. After 13 weeks of treatment the IL-1beta antibody treated group showed reduced glycated hemoglobin (( *)P=0.049), reduced serum levels of proinsulin (( *)P=0.015), reduced levels of insulin and smaller islet size (( *)P=1.65E-13) relative to the control antibody treated group. Neutralization of IL-1beta also significantly reduced serum amyloid A (SAA) which is an indicator of inflammation-induced acute phase response (( *)P=0.024). While there was no improvement of obesity, a significant improvement of glycemic control and of beta cell function is achieved by this pharmacological treatment which may slow/prevent disease progression in Type 2 Diabetes.


Nature Medicine | 2015

LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes

Pingping Li; Da Young Oh; Gautam Bandyopadhyay; William S. Lagakos; Saswata Talukdar; Olivia Osborn; Andrew F. Johnson; Heekyung Chung; Rafael Mayoral; Michael Maris; Jachelle M. Ofrecio; Sayaka Taguchi; Min Lu; Jerrold M. Olefsky

Insulin resistance results from several pathophysiologic mechanisms, including chronic tissue inflammation and defective insulin signaling. We found that liver, muscle and adipose tissue exhibit higher levels of the chemotactic eicosanoid LTB4 in obese high-fat diet (HFD)–fed mice. Inhibition of the LTB4 receptor Ltb4r1, through either genetic or pharmacologic loss of function, led to an anti-inflammatory phenotype with protection from insulin resistance and hepatic steatosis. In vitro treatment with LTB4 directly enhanced macrophage chemotaxis, stimulated inflammatory pathways, reduced insulin-stimulated glucose uptake in L6 myocytes, and impaired insulin-mediated suppression of hepatic glucose output in primary mouse hepatocytes. This was accompanied by lower insulin-stimulated Akt phosphorylation and higher Irs-1/2 serine phosphorylation, and all of these events were dependent on Gαi and Jnk1, two downstream mediators of Ltb4r1 signaling. These observations elucidate a novel role of the LTB4–Ltb4r1 signaling pathway in hepatocyte and myocyte insulin resistance, and they show that in vivo inhibition of Ltb4r1 leads to robust insulin-sensitizing effects.Chronic inflammation is a key component of obesity–induced insulin resistance and plays a central role in metabolic disease. In this study, we found that the major insulin target tissues, liver, muscle and adipose tissue exhibit increased levels of the chemotactic eicosanoid LTB4 in obese high fat diet (HFD) mice compared to lean chow fed mice. Inhibition of the LTB4 receptor, Ltb4r1, through either genetic or pharmacologic loss of function results in an anti–inflammatory phenotype with protection from systemic insulin resistance and hepatic steatosis in the setting of both HFD–induced and genetic obesity. Importantly, in vitro treatment with LTB4 directly enhanced macrophage chemotaxis, stimulated inflammatory pathways in macrophages, promoted de novo hepatic lipogenesis, decreased insulin stimulated glucose uptake in L6 myocytes, increased gluconeogenesis, and impaired insulin–mediated suppression of hepatic glucose output (HGO) in primary mouse hepatocytes. This was accompanied by decreased insulin stimulated Akt phosphorylation and increased Irs1 and Irs2 serine phosphorylation and all of these events were Gαi and Jnk dependent. Taken together, these observations elucidate a novel role of LTB4/Ltb4r1 in the etiology of insulin resistance in hepatocytes and myocytes, and shows that in vivo inhibition of Ltb4r1 leads to robust insulin sensitizing effects.


Diabetes | 2010

Insulin causes hyperthermia by direct inhibition of warm-sensitive neurons.

Manuel Sanchez-Alavez; Iustin V. Tabarean; Olivia Osborn; Kayo Mitsukawa; Jean Schaefer; Jeffrey S. Dubins; Kristina Holmberg; Izabella Klein; Joe Klaus; Luis F. Gomez; Hartmuth C. Kolb; James Secrest; Jeanine Jochems; Kevin Myashiro; Peter T. Buckley; John R. Hadcock; James Eberwine; Bruno Conti; Tamas Bartfai

OBJECTIVE Temperature and nutrient homeostasis are two interdependent components of energy balance regulated by distinct sets of hypothalamic neurons. The objective is to examine the role of the metabolic signal insulin in the control of core body temperature (CBT). RESEARCH DESIGN AND METHODS The effect of preoptic area administration of insulin on CBT in mice was measured by radiotelemetry and respiratory exchange ratio. In vivo 2-[18F]fluoro-2-deoxyglucose uptake into brown adipose tissue (BAT) was measured in rats after insulin treatment by positron emission tomography combined with X-ray computed tomography imaging. Insulin receptor–positive neurons were identified by retrograde tracing from the raphe pallidus. Insulin was locally applied on hypothalamic slices to determine the direct effects of insulin on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. RESULTS Injection of insulin into the preoptic area of the hypothalamus induced a specific and dose-dependent elevation of CBT mediated by stimulation of BAT thermogenesis as shown by imaging and respiratory ratio measurements. Retrograde tracing indicates that insulin receptor–expressing warm-sensitive neurons activate BAT through projection via the raphe pallidus. Insulin applied on hypothalamic slices acted directly on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. The hyperthermic effects of insulin were blocked by pretreatment with antibodies to insulin or with a phosphatidylinositol 3–kinase inhibitor. CONCLUSIONS Our findings demonstrate that insulin can directly modulate hypothalamic neurons that regulate thermogenesis and CBT and indicate that insulin plays an important role in coupling metabolism and thermoregulation at the level of anterior hypothalamus.


Molecular metabolism | 2015

Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity.

Rafael Mayoral; Olivia Osborn; Joanne C. McNelis; Andrew M. Johnson; Da Young Oh; Cristina Llorente Izquierdo; Heekyung Chung; Pingping Li; Paqui G. Través; Gautam Bandyopadhyay; Ariane R. Pessentheiner; Jachelle M. Ofrecio; Joshua R. Cook; Li Qiang; Domenico Accili; Jerrold M. Olefsky

Objective Adipose tissue is the primary site for lipid deposition that protects the organisms in cases of nutrient excess during obesogenic diets. The histone deacetylase Sirtuin 1 (SIRT1) inhibits adipocyte differentiation by targeting the transcription factor peroxisome proliferator activated-receptor gamma (PPARγ). Methods To assess the specific role of SIRT1 in adipocytes, we generated Sirt1 adipocyte-specific knockout mice (ATKO) driven by aP2 promoter onto C57BL/6 background. Sirt1flx/flxaP2Cre+ (ATKO) and Sirt1flx/flxaP2Cre- (WT) mice were fed high-fat diet for 5 weeks (short-term) or 15 weeks (chronic-term). Metabolic studies were combined with gene expression analysis and phosphorylation/acetylation patterns in adipose tissue. Results On standard chow, ATKO mice exhibit low-grade chronic inflammation in adipose tissue, along with glucose intolerance and insulin resistance compared with control fed mice. On short-term HFD, ATKO mice become more glucose intolerant, hyperinsulinemic, insulin resistant and display increased inflammation. During chronic HFD, WT mice developed a metabolic dysfunction, higher than ATKO mice, and thereby, knockout mice are more glucose tolerant, insulin sensitive and less inflamed relative to control mice. SIRT1 attenuates adipogenesis through PPARγ repressive acetylation and, in the ATKO mice adipocyte PPARγ was hyperacetylated. This high acetylation was associated with a decrease in Ser273-PPARγ phosphorylation. Dephosphorylated PPARγ is constitutively active and results in higher expression of genes associated with increased insulin sensitivity. Conclusion Together, these data establish that SIRT1 downregulation in adipose tissue plays a previously unknown role in long-term inflammation resolution mediated by PPARγ activation. Therefore, in the context of obesity, the development of new therapeutics that activate PPARγ by targeting SIRT1 may provide novel approaches to the treatment of T2DM.


Diabetes | 2015

Characterization of Distinct Subpopulations of Hepatic Macrophages in HFD/Obese Mice

Hidetaka Morinaga; Rafael Mayoral; Jan Heinrichsdorff; Olivia Osborn; Niclas Franck; Nasun Hah; Evelyn Walenta; Gautam Bandyopadhyay; Ariane R. Pessentheiner; Tyler J. Chi; Heekyung Chung; Juliane G. Bogner-Strauss; Ronald M. Evans; Jerrold M. Olefsky; Da Young Oh

The current dogma is that obesity-associated hepatic inflammation is due to increased Kupffer cell (KC) activation. However, recruited hepatic macrophages (RHMs) were recently shown to represent a sizable liver macrophage population in the context of obesity. Therefore, we assessed whether KCs and RHMs, or both, represent the major liver inflammatory cell type in obesity. We used a combination of in vivo macrophage tracking methodologies and adoptive transfer techniques in which KCs and RHMs are differentially labeled with fluorescent markers. With these approaches, the inflammatory phenotype of these distinct macrophage populations was determined under lean and obese conditions. In vivo macrophage tracking revealed an approximately sixfold higher number of RHMs in obese mice than in lean mice, whereas the number of KCs was comparable. In addition, RHMs comprised smaller size and immature, monocyte-derived cells compared with KCs. Furthermore, RHMs from obese mice were more inflamed and expressed higher levels of tumor necrosis factor-α and interleukin-6 than RHMs from lean mice. A comparison of the MCP-1/C-C chemokine receptor type 2 (CCR2) chemokine system between the two cell types showed that the ligand (MCP-1) is more highly expressed in KCs than in RHMs, whereas CCR2 expression is approximately fivefold greater in RHMs. We conclude that KCs can participate in obesity-induced inflammation by causing the recruitment of RHMs, which are distinct from KCs and are not precursors to KCs. These RHMs then enhance the severity of obesity-induced inflammation and hepatic insulin resistance.


Journal of Biological Chemistry | 2013

Neuronal Sirt1 Deficiency Increases Insulin Sensitivity in Both Brain and Peripheral Tissues

Min Lu; David A. Sarruf; Pingping Li; Olivia Osborn; Manuel Sanchez-Alavez; Saswata Talukdar; Ai Chen; Gautam Bandyopadhyay; Jianfeng Xu; Hidetaka Morinaga; Kevin Dines; Steven M. Watkins; Karl J. Kaiyala; Michael W. Schwartz; Jerrold M. Olefsky

Background: Sirt1 is a NAD+-dependent class III deacetylase and a cellular energy sensor. Results: Selective removal of Sirt1 in neurons causes increased central and systemic insulin sensitivity. Conclusion: Neuronal Sirt1 plays a physiological role to inhibit both hypothalamic insulin sensitivity and whole body metabolism. Significance: CNS Sirt1 inhibition is protective against metabolic diseases and hence non-braining-penetrating Sirt1 activators may have greatest therapeutic potential. Sirt1 is a NAD+-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1f/f mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet.

Collaboration


Dive into the Olivia Osborn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Sanchez-Alavez

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Pingping Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Denise Lackey

University of California

View shared research outputs
Top Co-Authors

Avatar

Da Young Oh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald M. Evans

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Simon Schenk

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge