Olivier Armant
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier Armant.
Nature | 2014
Vanja Haberle; Nan Li; Yavor Hadzhiev; Charles Plessy; Christopher Previti; Chirag Nepal; Jochen Gehrig; Xianjun Dong; Altuna Akalin; Ana Maria Suzuki; Wilfred van IJcken; Olivier Armant; Marco Ferg; Uwe Strähle; Piero Carninci; Ferenc Müller; Boris Lenhard
A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the selection of most TSSs by RNA polymerase II remain unresolved. Maternal to zygotic transition represents the most marked change of the transcriptome repertoire in the vertebrate life cycle. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the tenth cell cycle, marking the mid-blastula transition. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression, and determined the positions of H3K4me3-marked promoter-associated nucleosomes. Here we show that the transition from the maternal to zygotic transcriptome is characterized by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveal their DNA-sequence-associated positioning at promoters before zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of the zygotic TSS. The two TSS-defining grammars coexist, often physically overlapping, in core promoters of constitutively expressed genes to enable their expression in the two regulatory environments. The dissection of overlapping core promoter determinants represents a framework for future studies of promoter structure and function across different regulatory contexts.
PLOS ONE | 2011
Benjamin D. Weger; Meltem Sahinbas; Georg W. Otto; Philipp Mracek; Olivier Armant; Dirk Dolle; Kajori Lahiri; Daniela Vallone; Laurence Ettwiller; Robert Geisler; Nicholas S. Foulkes; Thomas Dickmeis
Most organisms possess circadian clocks that are able to anticipate the day/night cycle and are reset or “entrained” by the ambient light. In the zebrafish, many organs and even cultured cell lines are directly light responsive, allowing for direct entrainment of the clock by light. Here, we have characterized light induced gene transcription in the zebrafish at several organizational levels. Larvae, heart organ cultures and cell cultures were exposed to 1- or 3-hour light pulses, and changes in gene expression were compared with controls kept in the dark. We identified 117 light regulated genes, with the majority being induced and some repressed by light. Cluster analysis groups the genes into five major classes that show regulation at all levels of organization or in different subset combinations. The regulated genes cover a variety of functions, and the analysis of gene ontology categories reveals an enrichment of genes involved in circadian rhythms, stress response and DNA repair, consistent with the exposure to visible wavelengths of light priming cells for UV-induced damage repair. Promoter analysis of the induced genes shows an enrichment of various short sequence motifs, including E- and D-box enhancers that have previously been implicated in light regulation of the zebrafish period2 gene. Heterologous reporter constructs with sequences matching these motifs reveal light regulation of D-box elements in both cells and larvae. Morpholino-mediated knock-down studies of two homologues of the D-box binding factor Tef indicate that these are differentially involved in the cell autonomous light induction in a gene-specific manner. These findings suggest that the mechanisms involved in period2 regulation might represent a more general pathway leading to light induced gene expression.
Genome Research | 2013
Chirag Nepal; Yavor Hadzhiev; Christopher Previti; Vanja Haberle; Nan Li; Hazuki Takahashi; Ana Maria Suzuki; Ying Sheng; Rehab F. Abdelhamid; Santosh Anand; Jochen Gehrig; Altuna Akalin; Christel Kockx; Antoine van der Sloot; Wilfred van IJcken; Olivier Armant; Sepand Rastegar; Craig A. Watson; Uwe Strähle; Elia Stupka; Piero Carninci; Boris Lenhard; Ferenc Müller
Spatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provide a first and comprehensive description of the core promoter repertoire and its dynamic use during the development of a vertebrate embryo. By using cap analysis of gene expression (CAGE), we mapped transcription initiation events at single nucleotide resolution across 12 stages of zebrafish development. These CAGE-based transcriptome maps reveal genome-wide rules of core promoter usage, structure, and dynamics, key to understanding the control of gene regulation during vertebrate ontogeny. They revealed the existence of multiple classes of pervasive intra- and intergenic post-transcriptionally processed RNA products and their developmental dynamics. Among these RNAs, we report splice donor site-associated intronic RNA (sRNA) to be specific to genes of the splicing machinery. For the identification of conserved features, we compared the zebrafish data sets to the first CAGE promoter map of Tetraodon and the existing human CAGE data. We show that a number of features, such as promoter type, newly discovered promoter properties such as a specialized purine-rich initiator motif, as well as sRNAs and the genes in which they are detected, are conserved in mammalian and Tetraodon CAGE-defined promoter maps. The zebrafish developmental promoterome represents a powerful resource for studying developmental gene regulation and revealing promoter features shared across vertebrates.
Environmental Science & Technology | 2013
Nga Yu Ho; Lixin Yang; Jessica Legradi; Olivier Armant; Masanari Takamiya; Sepand Rastegar; Uwe Strähle
Methyl mercury (MeHg) is a neurotoxicant with adverse effects on the development of the nervous system from fish to man. Despite a detailed understanding of the molecular mechanisms by which MeHg affects cellular homeostasis, it is still not clear how MeHg causes developmental neurotoxicity. We performed here a genome-wide transcriptional analysis of MeHg-exposed zebrafish embryos and combined this with a whole-mount in situ expression analysis of 88 MeHg-affected genes. The majority of the analyzed genes showed tissue- and region-restricted responses in various organs and tissues. The genes were linked to gene ontology terms like oxidative stress, transport and cell protection. Areas even within the central nervous system (CNS) are affected differently resulting in distinct cellular stress responses. Our study revealed an unexpected heterogeneity in gene responses to MeHg exposure in different tissues and neuronal subregions, even though the known molecular action of MeHg would predict a similar burden of exposed cells. The overall structure of the developing brain of MeHg-exposed embryos appeared normal, suggesting that the mechanism leading to differentiation of the CNS is not overtly affected by exposure to MeHg. We propose that MeHg disturbs the function of the CNS by disturbing the cellular homeostasis. As these cellular stress responses comprise genes that are also involved in normal neuronal activity and learning, MeHg may affect the developing CNS in a subtle manner that manifests itself in behavioral deficits.
Developmental Biology | 2013
Olivier Armant; Martin März; Rebecca Schmidt; Marco Ferg; Nicolas Diotel; Raymond Ertzer; Jan Christian Bryne; Lixin Yang; Isabelle Baader; Markus Reischl; Jessica Legradi; Ralf Mikut; Derek L. Stemple; Wilfred van IJcken; Antoine van der Sloot; Boris Lenhard; Uwe Strähle; Sepand Rastegar
Transcription is the primary step in the retrieval of genetic information. A substantial proportion of the protein repertoire of each organism consists of transcriptional regulators (TRs). It is believed that the differential expression and combinatorial action of these TRs is essential for vertebrate development and body homeostasis. We mined the zebrafish genome exhaustively for genes encoding TRs and determined their expression in the zebrafish embryo by sequencing to saturation and in situ hybridisation. At the evolutionary conserved phylotypic stage, 75% of the 3302 TR genes encoded in the genome are already expressed. The number of expressed TR genes increases only marginally in subsequent stages and is maintained during adulthood suggesting important roles of the TR genes in body homeostasis. Fewer than half of the TR genes (45%, n=1711 genes) are expressed in a tissue-restricted manner in the embryo. Transcripts of 207 genes were detected in a single tissue in the 24h embryo, potentially acting as regulators of specific processes. Other TR genes were expressed in multiple tissues. However, with the exception of certain territories in the nervous system, we did not find significant synexpression suggesting that most tissue-restricted TRs act in a freely combinatorial fashion. Our data indicate that elaboration of body pattern and function from the phylotypic stage onward relies mostly on redeployment of TRs and post-transcriptional processes.
Nature microbiology | 2016
Zhenzhong Yu; Olivier Armant; Reinhard Fischer
Stress-sensing in fungi depends on a signalling cascade comprised of a two-component phosphorylation relay plus a subsequent MAP kinase cascade to trigger gene expression. Besides osmotic or oxidative stress, fungi sense many other environmental factors, one of which is light1,2. Light controls morphogenetic pathways but also the production of secondary metabolites such as penicillin. Here we show that phytochrome-dependent light signalling in Aspergillus nidulans involves the stress-sensing and osmosensing signalling pathway. In a screening for ‘blind’ mutants, the MAP kinase SakA (also known as HogA) was identified by whole-genome sequencing. The phytochrome FphA physically interacted with the histidine-containing phosphotransfer protein YpdA and caused light-dependent phosphorylation of the MAP kinase SakA and its shuttling into nuclei. In the absence of phytochrome, SakA still responded to osmotic stress but not to light. The SakA pathway thus integrates several stress factors and can be considered to be a hub for environmental signals.
Microbial Biotechnology | 2015
Thomas Schwartz; Olivier Armant; Nancy Bretschneider; Alexander Hahn; Silke Kirchen; Martin Seifert; Andreas Dötsch
The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic‐sensitive isolate PA30 and a multi‐resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD‐OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli‐specific gene regulation.
Stem Cells | 2015
Rebecca Rodriguez Viales; Nicolas Diotel; Marco Ferg; Olivier Armant; Julia Eich; Alessandro Alunni; Martin März; Laure Bally-Cuif; Sepand Rastegar; Uwe Strähle
The teleost brain has the remarkable ability to generate new neurons and to repair injuries during adult life stages. Maintaining life‐long neurogenesis requires careful management of neural stem cell pools. In a genome‐wide expression screen for transcription regulators, the id1 gene, encoding a negative regulator of E‐proteins, was found to be upregulated in response to injury. id1 expression was mapped to quiescent type I neural stem cells in the adult telencephalic stem cell niche. Gain and loss of id1 function in vivo demonstrated that Id1 promotes stem cell quiescence. The increased id1 expression observed in neural stem cells in response to injury appeared independent of inflammatory signals, suggesting multiple antagonistic pathways in the regulation of reactive neurogenesis. Together, we propose that Id1 acts to maintain the neural stem cell pool by counteracting neurogenesis‐promoting signals. Stem Cells 2015;33:892–903
Applied and Environmental Microbiology | 2014
Beatrix Tettmann; Andreas Dötsch; Olivier Armant; Christopher D. Fjell; Joerg Overhage
ABSTRACT Pseudomonas putida is a Gram-negative soil bacterium which is well-known for its versatile lifestyle, controlled by a large repertoire of transcriptional regulators. Besides one- and two-component regulatory systems, the genome of P. putida reveals 19 extracytoplasmic function (ECF) sigma factors involved in the adaptation to changing environmental conditions. In this study, we demonstrate that knockout of extracytoplasmic function sigma factor ECF-10, encoded by open reading frame PP4553, resulted in 2- to 4-fold increased antibiotic resistance to quinolone, β-lactam, sulfonamide, and chloramphenicol antibiotics. In addition, the ECF-10 mutant exhibited enhanced formation of biofilms after 24 h of incubation. Transcriptome analysis using Illumina sequencing technology resulted in the detection of 12 genes differentially expressed (>2-fold) in the ECF-10 knockout mutant strain compared to their levels of expression in wild-type cells. Among the upregulated genes were ttgA, ttgB, and ttgC, which code for the major multidrug efflux pump TtgABC in P. putida KT2440. Investigation of an ECF-10 and ttgA double-knockout strain and a ttgABC-overexpressing strain demonstrated the involvement of efflux pump TtgABC in the stress resistance and biofilm formation phenotypes of the ECF-10 mutant strain, indicating a new role for this efflux pump beyond simple antibiotic resistance in P. putida KT2440.
Archives of Toxicology | 2016
Christopher T. Krüger; Bettina Maria Fischer; Olivier Armant; Volker Morath; Uwe Strähle; Andrea Hartwig
In our previous work, we established an in vitro variant of the currently developed in vivo PIG-A assay as promising mutagenicity test system. We applied the human B-lymphoblastoid cell line TK6 for the in vitro assay development, which is based on the cellular glycosylphosphatidylinositol (GPI) status. At least 22 genes are involved in GPI biosynthesis, leading to the complex situation that, in principle, multiple genes could induce a GPI-deficient phenotype by acquiring inactivating mutations. However, only the PIG-A gene is located on the X-chromosome, rendering PIG-A more sensitive compared to autosomal linked, GPI-relevant genes. In this work, we investigated the GPI-related genotype-to-phenotype relationship in TK6 cells. By a next-generation sequencing approach, we identified a heterozygous chromosomal deletion on chromosome 17, where the PIG-L gene is located. In the analyzed TK6 cell clones, the GPI-deficient phenotype was induced either by mutations in PIG-A, by the complete absence of PIG-A mRNA, or by deletions in the remaining functional PIG-L gene, causing loss of heterozygosity. The identified PIG-L heterozygosity could also be responsible for the increased sensitivity toward mutagenic ethyl methanesulfonate or UV-C treatments of p53-proficient TK6 compared to the TK6-related, but p53-deficient WI-L2-NS cell line. Moreover, the WI-L2-NS cell line was found to exhibit a much lower number of GPI-deficient mutant cells in the purchased cell batch, and WI-L2-NS exerted a lower spontaneous rate of GPI deficiency compared to TK6 cells.