Olivier Cuvier
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier Cuvier.
Nature Cell Biology | 2007
Laetitia K. Linares; Rosemary Kiernan; Robinson Triboulet; Christine Chable-Bessia; Daniel Latreille; Olivier Cuvier; Matthieu Lacroix; Laurent Le Cam; Olivier Coux; Monsef Benkirane
The p300–CBP-associated factor (PCAF) is a histone acetyltransferase (HAT) involved in the reversible acetylation of various transcriptional regulators, including the tumour suppressor p53. It is implicated in many cellular processes, such as transcription, differentiation, proliferation and apoptosis. We observed that knockdown of PCAF expression in HeLa or U2OS cell lines induces stabilization of the oncoprotein Hdm2, a RING finger E3 ligase primarily known for its role in controlling p53 stability. To investigate the molecular basis of this effect, we examined whether PCAF is involved in Hdm2 ubiquitination. Here, we show that PCAF, in addition to its acetyltransferase activity, possesses an intrinsic ubiquitination activity that is critical for controlling Hdm2 expression levels, and thus p53 functions. Our data highlight a regulatory crosstalk between PCAF and Hdm2 activities, which is likely to have a central role in the subtle control of p53 activity after DNA damage.
Nature | 2005
Jérôme Déjardin; Aurélien Rappailles; Olivier Cuvier; Charlotte Grimaud; Martine Decoville; Daniel Locker; Giacomo Cavalli
Polycomb and trithorax group (PcG and trxG) proteins maintain silent and active transcriptional states, respectively, throughout development. In Drosophila, PcG and trxG proteins associate with DNA regions named Polycomb and trithorax response elements (PRE and TRE), but the mechanisms of recruitment are unknown. We previously characterized a minimal element from the regulatory region of the Abdominal-B gene, termed Ab-Fab. Ab-Fab contains a PRE and a TRE and is able to maintain repressed or active chromatin states during development. Here we show that the Dorsal switch protein 1 (DSP1), a Drosophila HMGB2 homologue, binds to a sequence present within Ab-Fab and in other characterized PREs. Addition of this motif to an artificial sequence containing Pleiohomeotic and GAGA factor consensus sites is sufficient for PcG protein recruitment in vivo. Mutations that abolish DSP1 binding to Ab-Fab and to a PRE from the engrailed locus lead to loss of PcG protein binding, loss of silencing, and switching of these PREs into constitutive TREs. The binding of DSP1 to PREs is therefore important for the recruitment of PcG proteins.
Cell | 2005
Domenico Maiorano; Olivier Cuvier; Etienne Danis; Marcel Méchali
MCM2-7 proteins are replication factors required to initiate DNA synthesis and are currently the best candidates for replicative helicases. We show that the MCM2-7-related protein MCM8 is required to efficiently replicate chromosomal DNA in Xenopus egg extracts. MCM8 does not associate with the soluble MCM2-7 complex and binds chromatin upon initiation of DNA synthesis. MCM8 depletion does not affect replication licensing or MCM3 loading but slows down DNA synthesis and reduces chromatin recruitment of RPA34 and DNA polymerase-alpha. Recombinant MCM8 displays both DNA helicase and ATPase activities in vitro. Reconstitution experiments show that ATP binding in MCM8 is required to rescue DNA synthesis in MCM8-depleted extracts. MCM8 colocalizes with replication foci and RPA34 on chromatin. We suggest that MCM8 functions in the elongation step of DNA replication as a helicase that facilitates the recruitment of RPA34 and stimulates the processivity of DNA polymerases at replication foci.
Chromosoma | 1999
Craig M. Hart; Olivier Cuvier; Ulrich K. Laemmli
Abstract.Boundary elements interfere with communication between enhancers and promoters, but only when interposed. Understanding this activity will require identifying the proteins involved. The boundary element-associated factor BEAF is one protein that is implicated in boundary element function. Three genomic fragments (scs’, BE76 and BE28) containing BEAF binding sites function as boundary elements in transgenic Drosophila, suggesting that this is an intrinsic property of the numerous genomic regions to which BEAF binds. To characterize additional proteins that interact with boundary elements, we have isolated a protein that binds to two of these boundary elements (BE76 and BE28) and have identified it as the transcription factor DREF. We present evidence that BEAF and DREF compete for binding to overlapping binding sites, and that this competition occurs in vivo. DREF is believed to regulate genes whose products are involved in DNA replication and cell proliferation, suggesting that the activation of transcription predicted to result from the displacement of BEAF by DREF might be limited to certain rapidly proliferating tissues. This is the first suggestion that the activity of a subset of boundary elements might be regulated.
Molecular and Cellular Biology | 2009
Nan Jiang; Eldon Emberly; Olivier Cuvier; Craig M. Hart
ABSTRACT Insulator elements play a role in gene regulation that is potentially linked to nuclear organization. Boundary element-associated factors (BEAFs) 32A and 32B associate with hundreds of sites on Drosophila polytene chromosomes. We hybridized DNA isolated by chromatin immunoprecipitation to genome tiling microarrays to construct a genome-wide map of BEAF binding locations. A distinct difference in the association of 32A and 32B with chromatin was noted. We identified 1,820 BEAF peaks and found that more than 85% were less than 300 bp from transcription start sites. Half are between head-to-head gene pairs. BEAF-associated genes are transcriptionally active as judged by the presence of RNA polymerase II, dimethylated histone H3 K4, and the alternative histone H3.3. Forty percent of these genes are also associated with the polymerase negative elongation factor NELF. Like NELF-associated genes, most BEAF-associated genes are highly expressed. Using quantitative reverse transcription-PCR, we found that the expression levels of most BEAF-associated genes decrease in embryos and cultured cells lacking BEAF. These results provide an unexpected link between BEAF and transcription, suggesting that BEAF plays a role in maintaining most associated promoter regions in an environment that facilitates high transcription levels.
Molecular and Cellular Biology | 1998
Olivier Cuvier; Craig M. Hart; Ulrich K. Laemmli
ABSTRACT Boundary elements are thought to define the ends of functionally independent domains of genetic activity. An assay for boundary activity based on this concept measures the ability to insulate a bracketed, chromosomally integrated reporter gene from position effects. Despite their presumed importance, the few examples identified to date apparently do not share sequence motifs or DNA binding proteins. TheDrosophila protein BEAF binds the scs′ boundary element of the 87A7 hsp70 locus and roughly half of polytene chromosome interband loci. To see if these sites represent a class of boundary elements that have BEAF in common, we have isolated and studied several genomic BEAF binding sites as candidate boundary elements (cBEs). BEAF binds with high affinity to clustered, variably arranged CGATA motifs present in these cBEs. No other sequence homologies were found. Two cBEs were tested and found to confer position-independent expression on a mini-whitereporter gene in transgenic flies. Furthermore, point mutations in CGATA motifs that eliminate binding by BEAF also eliminate the ability to confer position-independent expression. Taken together, these findings suggest that clustered CGATA motifs are a hallmark of a BEAF-utilizing class of boundary elements found at many loci. This is the first example of a class of boundary elements that share a sequence motif and a binding protein.
PLOS Biology | 2008
Eldon Emberly; Roxane Blattes; Bernd Schuettengruber; Magali Hennion; Nan Jiang; Craig M. Hart; Emmanuel Käs; Olivier Cuvier
Chromatin insulators/boundary elements share the ability to insulate a transgene from its chromosomal context by blocking promiscuous enhancer–promoter interactions and heterochromatin spreading. Several insulating factors target different DNA consensus sequences, defining distinct subfamilies of insulators. Whether each of these families and factors might possess unique cellular functions is of particular interest. Here, we combined chromatin immunoprecipitations and computational approaches to break down the binding signature of the Drosophila boundary element–associated factor (BEAF) subfamily. We identify a dual-core BEAF binding signature at 1,720 sites genome-wide, defined by five to six BEAF binding motifs bracketing 200 bp AT-rich nuclease-resistant spacers. Dual-cores are tightly linked to hundreds of genes highly enriched in cell-cycle and chromosome organization/segregation annotations. siRNA depletion of BEAF from cells leads to cell-cycle and chromosome segregation defects. Quantitative RT-PCR analyses in BEAF-depleted cells show that BEAF controls the expression of dual core–associated genes, including key cell-cycle and chromosome segregation regulators. beaf mutants that impair its insulating function by preventing proper interactions of BEAF complexes with the dual-cores produce similar effects in embryos. Chromatin immunoprecipitations show that BEAF regulates transcriptional activity by restricting the deposition of methylated histone H3K9 marks in dual-cores. Our results reveal a novel role for BEAF chromatin dual-cores in regulating a distinct set of genes involved in chromosome organization/segregation and the cell cycle.
Molecular and Cellular Biology | 2002
Nathalie Aulner; Caroline Monod; Guillaume Mandicourt; Denis Jullien; Olivier Cuvier; Alhousseynou Sall; Sam Janssen; Ulrich K. Laemmli; Emmanuel Käs
ABSTRACT We have analyzed the expression pattern of the D1 gene and the localization of its product, the AT hook-bearing nonhistone chromosomal protein D1, during Drosophila melanogaster development. D1 mRNAs and protein are maternally contributed, and the protein localizes to discrete foci on the chromosomes of early embryos. These foci correspond to 1.672- and 1.688-g/cm3 AT-rich satellite repeats found in the centromeric heterochromatin of the X and Y chromosomes and on chromosomes 3 and 4. D1 mRNA levels subsequently decrease throughout later development, followed by the accumulation of the D1 protein in adult gonads, where two distributions of D1 can be correlated to different states of gene activity. We show that the EP473 mutation, a P-element insertion upstream of D1 coding sequences, affects the expression of the D1 gene and results in an embryonic homozygous lethal phenotype correlated with the depletion of D1 protein during embryogenesis. Remarkably, decreased levels of D1 mRNA and protein in heterozygous flies lead to the suppression of position-effect variegation (PEV) of the white gene in the white-mottled (wm4h) X-chromosome inversion. Our results identify D1 as a DNA-binding protein of known sequence specificity implicated in PEV. D1 is the primary factor that binds the centromeric 1.688-g/cm3 satellite repeats which are likely involved in white-mottled variegation. We propose that the AT-hook D1 protein nucleates heterochromatin assembly by recruiting specialized transcriptional repressors and/or proteins involved in chromosome condensation.
Genes & Development | 2008
Olivier Cuvier; Slavica Stanojcic; Jean-Marc Lemaitre; Marcel Méchali
Topoisomerase II (topo II) is required for chromosome segregation and for reprogramming replicons. Here, we show that topo II couples DNA replication termination with the clearing of replication complexes for resetting replicons at mitosis. Topo II inhibition impairs completion of DNA replication, accounting for replication protein A (RPA) stabilization onto ssDNA. Topo II inhibition does not affect the caffeine-sensitive ORC1 degradation found upon origin firing, but it impairs the cdk-dependent degradation/chromatin dissociation of an ORC1/2 reservoir at mitosis. Our results show that ORC1 degradation is rescued by Pin1 depletion and that this topo II-dependent clearing of ORC1/2 from chromatin involves the APC.
PLOS Genetics | 2014
Jutta Vogelmann; Antoine Le Gall; Stephanie Dejardin; Frédéric Allemand; Adrien Gamot; Gilles Labesse; Olivier Cuvier; Nicolas Nègre; Martin Cohen-Gonsaud; Emmanuel Margeat
Chromatin insulators are genetic elements implicated in the organization of chromatin and the regulation of transcription. In Drosophila, different insulator types were characterized by their locus-specific composition of insulator proteins and co-factors. Insulators mediate specific long-range DNA contacts required for the three dimensional organization of the interphase nucleus and for transcription regulation, but the mechanisms underlying the formation of these contacts is currently unknown. Here, we investigate the molecular associations between different components of insulator complexes (BEAF32, CP190 and Chromator) by biochemical and biophysical means, and develop a novel single-molecule assay to determine what factors are necessary and essential for the formation of long-range DNA interactions. We show that BEAF32 is able to bind DNA specifically and with high affinity, but not to bridge long-range interactions (LRI). In contrast, we show that CP190 and Chromator are able to mediate LRI between specifically-bound BEAF32 nucleoprotein complexes in vitro. This ability of CP190 and Chromator to establish LRI requires specific contacts between BEAF32 and their C-terminal domains, and dimerization through their N-terminal domains. In particular, the BTB/POZ domains of CP190 form a strict homodimer, and its C-terminal domain interacts with several insulator binding proteins. We propose a general model for insulator function in which BEAF32/dCTCF/Su(HW) provide DNA specificity (first layer proteins) whereas CP190/Chromator are responsible for the physical interactions required for long-range contacts (second layer). This network of organized, multi-layer interactions could explain the different activities of insulators as chromatin barriers, enhancer blockers, and transcriptional regulators, and suggest a general mechanism for how insulators may shape the organization of higher-order chromatin during cell division.