Olivier De Almeida
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier De Almeida.
Journal of Thermal Analysis and Calorimetry | 2014
Emeline Bessard; Olivier De Almeida; Gérard Bernhart
A differential generalized Avrami’s law is used to model crystallization kinetic of PEEK in considering that PEEK crystallization results from the contribution of two distinct mechanisms. The form of this equation allows to predict with good accuracy both isothermal and non-isothermal crystallization kinetics. Nevertheless, isothermal model parameters are not entirely satisfactory for predicting non-isothermal crystallization and the identification of kinetic parameters is needed for both isothermal and non-isothermal cases. The results show that the Avrami exponents and Arrhenius activation energies remain constant for both conditions and therefore suggest that these parameters are only material dependent. On the other hand, the other kinetic parameters depend on the crystallization condition and vary with temperature and/or cooling rate.
ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming | 2016
Sinan Boztepe; Abdoulahad Thiam; Olivier De Almeida; Yannick Le Maoult; Fabrice Schmidt
Radiation heat transfer is the most common method used in thermoforming processes of thermoplastic polymers due to their poor thermal conductivity. Considering the fact that the thermo-optical characteristics of polymers play a major role in the efficiency of radiative heat transfer in bulk polymers, microstructure of semi-crystalline thermoplastics is one of the key factors to understand this heat transfer phenomenon in depth. In this study, a relation between the microcrystalline structure of polyolefin (PO) and its effect on the thermo-optical properties was experimentally analyzed. Information on the microcrystalline structure of the samples was obtained by determining the degree of crystallinity (X-c) thanks to Differential Scanning Calorimetry (DSC). Using Fourier Transform Infrared (FTIR) spectroscopy and integrating sphere, optical characteristics of the PO samples were analyzed considering two spectrums that are in near-infrared (NIR) and middle-infrared (MIR) spectral regions respectively. The analyses showed that the degree of crystallinity has a great effect on the thermo-optical characteristics of the PO - particularly considering transmission - in NIR range. Such a coupled effect can be functionalized and adopted to develop an advanced radiative heat transfer model that may be used for addressing various problems on infrared (IR) heating of heterogeneous materials, particularly semi-crystalline thermoplastics. In the last part of the paper, a theoretical approach for consideration of the heterogeneity of semi-crystalline thermoplastics in a radiative heat transfer model was highlighted.
ESAFORM 2016: Proceedings of the 19th International ESAFORM Conference on Material Forming | 2016
Théo Baumard; Olivier De Almeida; Gary Menary; Yannick Le Maoult; Fabrice Schmidt; Jérôme Bikard
The infrared heating of a vacuum-bagged, thermoplastic prepreg stack of glass/PA66 was studied to investigate the influence of vacuum level on thermal contact resistance between plies. A higher vacuum level was shown experimentally to decrease the transverse heat transfer efficiency, indicating that considering only the effect of heat conduction at the plies interfaces is not sufficient to predict the temperature distribution. An inverse analysis was used to retrieve the contact resistance coefficients as a function of vacuum pressure.
Key Engineering Materials | 2013
Abdelmagid El Bakali; Olivier De Almeida; Jérôme Bikard; Maxime Villière; Fabrice Schmidt; Yannick Le Maoult; Myriam Dauphin
Composite stamping is a two steps process that includes an infrared heating oven in order to melt the composite sheets before forming. This study deals with the numerical simulation of the heating step of the process. The numerical model has been validated using three woven glass and carbon / PA6.6 composites provided by Solvay Rhodia. This type of simulation consists in solving the heat equation with a radiative flux that characterizes the interaction of the material with the IR heating. The model thus considers the IR properties of the material (emission and reflexion). Considering a homogeneous composite, the optical and thermal properties of sheets have been first measured. The material’s emissivity has been measured using a FTIR spectrometer from the reflective and transmitive spectra, by using the Kirchoff law and considering a Lambertian material. Three complementary measurement techniques were used to determine the thermal properties of the composites. Differential Scanning Calorimetry (DSC) measurements have been performed to identify the heat capacity of the composites. On another hand, a hot disc system (measurements performed at the LTN, France) has been used in transient conditions to determine the heat capacity and the thermal conductivity of the composites is all three directions. Finally, the in-plane thermal matrix of conductivity has also been measured by thermography by using an inverse method. The simulation of composites heating has been performed with Comsol MultiphysicsTM and the simulation procedure was validated by comparison with experimental results. The simulated IR oven is composed of 9 IR emittors provided by Toshiba Lighting Company that emit mainly in short IR wavelength (0.75-2µm). The emission properties of the tungsten filament were implemented in order to simulate the IR heating. Free convective heat transfer was also taken into account in the oven. In order to validate the model, an experimental set-up was instrumented with a calibrated IR pyrometer that measured the back side of the heated composite sheets. The experimental results confirm a low thermal gradient through composite thickness, in particular for carbon-reinforced composite. This result is consistent with the low Biot number of the composites. Moreover, experimental and simulated temperatures are in good agreement with an error lower than 15% in the entire heating stage from room to melt temperature.
INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES (AMPT2010) | 2011
Emeline Bessard; Olivier De Almeida; Gérard Bernhart
Fast mould heating is nowadays possible by using induction technology for example with the Cage System® developed by RocTool. It allows heating and cooling kinetics of about 100° C per minute and new perspectives are thus possible to optimize the compression moulding process of long fibre reinforced thermoplastic composites. Indeed, a high forming temperature may favour polymer creep and so on composite consolidation. Nevertheless, the processing time of PEEK composite above melt temperature must be reduced to a few minutes due to the fast thermal degradation of the matrix. On the other hand, high cooling rates may have negative effect on matrix crystallinity. The proposed procedure consist in performing a few minutes isotherm around 300° C during the fast cooling. It would favour a high degree of crystallinity of PEEK without extending the cycle time.
Archive | 2018
Sinan Boztepe; Rémi Gilblas; Olivier De Almeida; Yannick Le Maoult; Fabrice Schmidt
This paper introduces a cost-effective numerical model for infrared (IR) heating of semi-crystalline polymers. For the numerical and experimental studies presented here semi-crystalline polyethylene (PE) was used. The optical properties of PE were experimentally analyzed under varying temperature and the obtained results were used as input in the numerical studies. The model was built based on optically homogeneous medium assumption whereas the strong variation in the thermo-optical properties of semi-crystalline PE under heating was taken into account. Thus, the change in the amount radiative energy absorbed by the PE medium was introduced in the model induced by its temperature-dependent thermo-optical properties. The computational study was carried out considering an iterative closed-loop computation, where the absorbed radiation was computed using an in-house developed radiation heat transfer algorithm -RAYHEAT- and the computed results was transferred into the commercial software -COMSOL Multiphysics- for solving transient heat transfer problem to predict temperature field. The predicted temperature field was used to iterate the thermo-optical properties of PE that varies under heating. In order to analyze the accuracy of the numerical model experimental analyses were carried out performing IR-thermographic measurements during the heating of the PE plate. The applicability of the model in terms of computational cost, number of numerical input and accuracy was highlighted.
Journal of Thermoplastic Composite Materials | 2018
Olivier De Almeida; Jean-François Ferrero; Laurent Escalé; Gérard Bernhart
The aim of the work is to use Charpy impact test for quick evaluations of different Polyether-ether-ketone (PEEK)-reinforced composites to be used for impact protection. In the first part, the influence of weave pattern was first analysed by comparing the impact behaviour of three PEEK composites reinforced with plies of unidirectional (UD) tapes, 5H satin fabrics and 2 × 2 twill fabrics made of high-strength carbon fibres. In the second part, the influence of fibre nature was investigated for the same weave pattern. The impact behaviour of five 2 × 2 twill fabrics made from inorganic fibre (carbon, glass and basalt) and organic fibre (aramid and poly(p-phenylene-2,6-benzobisoxazole) (PBO)) has been compared. Two main types of failure modes were identified: a brittle behaviour mode with high failure strength and a highly deformable behaviour mode in which energy absorption is more important. The balance between brittle behaviour and highly deformable behaviour results from competition between the yarn crimp, weave pattern and fibre properties of the composite. Slight yarn crimp and small ply thickness increase the stiffness of the composite and induce brittle behaviour characterized by fibre failure in tension and a steep peak on the loading curves. This behaviour is observed in UD and 5H satin carbon-reinforced composites or 2 × 2 twill glass and basalt fabric-reinforced composites. In contrast, aramid and PBO 2 × 2 twill fabric composites exhibit high shear strength. The highly deformable behaviour of the specimens during the Charpy impact led, in the case of organic fibres, to a non-breakage of the fibres and consequently to a high level of energy absorption. This behaviour is necessarily interesting in armour applications.
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience | 2017
Sinan Boztepe; Rémi Gilblas; Olivier De Almeida; Yannick Le Maoult; Fabrice Schmidt
Most of the thermoforming processes of thermoplastic polymers and their composites are performed adopting a combined heating and forming stages at which a precursor is heated prior to the forming. This step is done in order to improve formability by softening the thermoplastic polymer. Due to low thermal conductivity and semi-transparency of polymers, infrared (IR) heating is widely used for thermoforming of such materials. Predictive radiation heat transfer models for temperature distributions are therefore critical for optimizations of thermoforming process. One of the key challenges is to build a predictive model including the physical background of radiation heat transfer phenomenon in semi-crystalline thermoplastics as their microcrystalline structure introduces an optically heterogeneous medium. In addition, the accuracy of a predictive model is required to be validated experimentally where IR thermography is one of the suitable methods for such a validation as it provides a non-invasive, full-field...
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience | 2017
Théo Baumard; Gary Menary; Olivier De Almeida; Fabrice Schmidt; Peter Martin; Jérôme Bikard
A strategy for the simulation of the whole thermoforming process, from the infrared heating to the stamping, is presented here. Two loosely coupled simulation tools are being developed: the first one computes a realistic 3D, transient temperature field of the composite stack inside an infrared oven, considering the radiative, conductive and convective heat transfers; the temperature distribution is used as an input for the second that aims at simulating the thermomechanical behaviour of the composite during the forming step via a non-orthogonal constitutive model. The steps for the identification of the model parameters are introduced. Initial validation tests show realistic results in term of shear angle distribution.
Key Engineering Materials | 2012
Jérémie Vignes; Fabrice Schmidt; Gilles Dusserre; Olivier De Almeida; Jean Frédéric Dalmasso
During the pressing step, the clay tiles undergo stresses which result in the appearance of defects. A rheological study, based on free compression tests, allowed to confirm the Elasto-visco-plastic behaviour of the clay. The different constitutive parameters were estimated by fitting the force-displacement experimental curves using the optimisation algorithm (ES Metamodel) implanted in the commercial software Forge 2009®. The influence of the tribological parameters was studied using squeezing numerical simulations of a full tile. The numerical model was validated with experimental squeezing test of technological specimen with a tile lug. Then, we have compared experimental force with the numerical one and deduced that the clay/tool interface is not perfectly sliding. A friction Tresca’s law was used to model the clay/tool interface. Numerical results showed that the actual geometry of tile lug didn’t allow to form correctly the tile. Several areas undergo tensile stress, air traps ,... A new geometry of tile lug was proposed in order to limit this phenomenon. Using a simplified defect criteria (Latham and Cockroft), the numerical model allowed to locate the areas where there is a risk of crack.