Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Groussin is active.

Publication


Featured researches published by Olivier Groussin.


Science | 2011

EPOXI at Comet Hartley 2

Michael F. A'Hearn; Michael Belton; W. Alan Delamere; Lori Michelle Feaga; D. L. Hampton; J. Kissel; Kenneth P. Klaasen; Lucy A. McFadden; Karen J. Meech; H. Jay Melosh; Peter H. Schultz; Jessica M. Sunshine; Peter C. Thomas; Joseph Veverka; Dennis D. Wellnitz; D. K. Yeomans; Sebastien Besse; D. Bodewits; Timothy Bowling; Brian T. Carcich; Steven M. Collins; Tony L. Farnham; Olivier Groussin; Brendan Hermalyn; Michael Shawn Kelley; Jian-Yang Li; Don J. Lindler; Carey Michael Lisse; Stephanie McLaughlin; Frederic Merlin

In situ observations show that comet Hartley 2 is an unusually hyperactive comet. Understanding how comets work—what drives their activity—is crucial to the use of comets in studying the early solar system. EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus, taking both images and spectra. Unlike large, relatively inactive nuclei, this nucleus is outgassing primarily because of CO2, which drags chunks of ice out of the nucleus. It also shows substantial differences in the relative abundance of volatiles from various parts of the nucleus.


Science | 2015

On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko

H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Jessica Agarwal; Michael F. A’Hearn; F. Angrilli; Anne-Thérèse Auger; M. Antonella Barucci; Jean-Loup Bertaux; I. Bertini; Sebastien Besse; D. Bodewits; Claire Capanna; G. Cremonese; Vania Da Deppo; B. Davidsson; Stefano Debei; Mariolino De Cecco; Francesca Ferri; S. Fornasier; M. Fulle; Robert W. Gaskell; Lorenza Giacomini; Olivier Groussin; Pablo Gutierrez-Marques; Pedro J. Gutierrez

Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.


Science | 2009

Temporal and Spatial Variability of Lunar Hydration As Observed by the Deep Impact Spacecraft

Jessica M. Sunshine; Tony L. Farnham; Lori Michelle Feaga; Olivier Groussin; Frederic Merlin; Ralph E. Milliken; Michael F. A'Hearn

Lunar Water The Moon has been thought to be primarily anhydrous, although there has been some evidence for accumulated ice in permanently shadowed craters near its poles (see the Perspective by Lucey, published online 24 September). By analyzing recent infrared mapping by Chandrayaan-1 and Deep Impact, and reexamining Cassini data obtained during its early flyby of the Moon, Pieters et al. (p. 568, published online 24 September), Sunshine et al. (p. 565, published online 24 September), and Clark et al. (p. 562, published online 24 September) reveal a noticeable absorption signal for H2O and OH across much of the surface. Some variability in water abundance is seen over the course of the lunar day. The data imply that solar wind is depositing and/or somehow forming water and OH in minerals near the lunar surface, and that this trapped water is dynamic. Space-based spectroscopic measurements provide evidence for water or hydroxyl (OH) on the surface of the Moon. The Moon is generally anhydrous, yet the Deep Impact spacecraft found the entire surface to be hydrated during some portions of the day. Hydroxyl (OH) and water (H2O) absorptions in the near infrared were strongest near the North Pole and are consistent with <0.5 weight percent H2O. Hydration varied with temperature, rather than cumulative solar radiation, but no inherent absorptivity differences with composition were observed. However, comparisons between data collected 1 week (a quarter lunar day) apart show a dynamic process with diurnal changes in hydration that were greater for mare basalts (~70%) than for highlands (~50%). This hydration loss and return to a steady state occurred entirely between local morning and evening, requiring a ready daytime source of water-group ions, which is consistent with a solar wind origin.


Science | 2015

Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun

Alessandra Rotundi; H. Sierks; Vincenzo Della Corte; M. Fulle; Pedro J. Gutierrez; Luisa M. Lara; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; José Juan López-Moreno; Mario Accolla; Jessica Agarwal; Michael F. A’Hearn; Nicolas Altobelli; F. Angrilli; M. Antonietta Barucci; Jean-Loup Bertaux; I. Bertini; D. Bodewits; E. Bussoletti; L. Colangeli; Massimo Cosi; G. Cremonese; J.-F. Crifo; Vania Da Deppo; B. Davidsson; Stefano Debei

Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency’s Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10−10 to 10−7 kilograms, and 48 grains of mass 10−5 to 10−2 kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.


Science | 2006

Exposed water ice deposits on the surface of comet 9P/Tempel 1

Jessica M. Sunshine; Michael F. A'Hearn; Olivier Groussin; J.-Y. Li; Michael J. S. Belton; W. A. Delamere; J. Kissel; Kenneth P. Klaasen; Lucy A. McFadden; Karen J. Meech; H. J. Melosh; Peter H. Schultz; Peter C. Thomas; J. Veverka; D. K. Yeomans; I. Busko; M. Desnoyer; Tony L. Farnham; Lori Michelle Feaga; D. L. Hampton; Don J. Lindler; C. M. Lisse; Dennis D. Wellnitz

We report the direct detection of solid water ice deposits exposed on the surface of comet 9P/Tempel 1, as observed by the Deep Impact mission. Three anomalously colored areas are shown to include water ice on the basis of their near-infrared spectra, which include diagnostic water ice absorptions at wavelengths of 1.5 and 2.0 micrometers. These absorptions are well modeled as a mixture of nearby non-ice regions and 3 to 6% water ice particles 10 to 50 micrometers in diameter. These particle sizes are larger than those ejected during the impact experiment, which suggests that the surface deposits are loose aggregates. The total area of exposed water ice is substantially less than that required to support the observed ambient outgassing from the comet, which likely has additional source regions below the surface.


Science | 2015

The morphological diversity of comet 67P/Churyumov-Gerasimenko

Nicolas Thomas; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; Hans Rickman; D. Koschny; H. U. Keller; Jessica Agarwal; Michael F. A'Hearn; F. Angrilli; Anne-Thérèse Auger; M. Antonella Barucci; Jean-Loup Bertaux; I. Bertini; Sebastien Besse; D. Bodewits; G. Cremonese; Vania Da Deppo; Bjoern Davidsson; Mariolino De Cecco; Stefano Debei; M. R. El-Maarry; Francesca Ferri; S. Fornasier; M. Fulle; Lorenza Giacomini; Olivier Groussin; Pedro J. Gutierrez; C. Güttler

Images of comet 67P/Churyumov-Gerasimenko acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) imaging system onboard the European Space Agency’s Rosetta spacecraft at scales of better than 0.8 meter per pixel show a wide variety of different structures and textures. The data show the importance of airfall, surface dust transport, mass wasting, and insolation weathering for cometary surface evolution, and they offer some support for subsurface fluidization models and mass loss through the ejection of large chunks of material.


Astronomy and Astrophysics | 2015

Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko Stereo-photogrammetric analysis of Rosetta/OSIRIS image data

Frank Preusker; Frank Scholten; Klaus-Dieter Matz; Thomas Roatsch; Konrad Willner; S. F. Hviid; J. Knollenberg; L. Jorda; Pedro J. Gutierrez; Ekkehard Kührt; S. Mottola; Michael F. A'Hearn; Nicolas Thomas; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Jessica Agarwal; M. A. Barucci; I. Bertini; G. Cremonese; Vania Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; S. Fornasier; M. Fulle

We analyzed more than 200 OSIRIS NAC images with a pixel scale of 0.9−2.4 m/pixel of comet 67P/Churyumov-Gerasimenko (67P) that have been acquired from onboard the Rosetta spacecraft in August and September 2014 using stereo-photogrammetric methods (SPG). We derived improved spacecraft position and pointing data for the OSIRIS images and a high-resolution shape model that consists of about 16 million facets (2 m horizontal sampling) and a typical vertical accuracy at the decimeter scale. From this model, we derive a volume for the northern hemisphere of 9.35 km3 ± 0.1 km3. With the assumption of a homogeneous density distribution and taking into account the current uncertainty of the position of the comet’s center-of-mass, we extrapolated this value to an overall volume of 18.7 km3 ± 1.2 km3, and, with a current best estimate of 1.0 × 1013 kg for the mass, we derive a bulk density of 535 kg/m3 ± 35 kg/m3. Furthermore, we used SPG methods to analyze the rotational elements of 67P. The rotational period for August and September 2014 was determined to be 12.4041 ± 0.0004 h. For the orientation of the rotational axis (z-axis of the body-fixed reference frame) we derived a precession model with a half-cone angle of 0.14◦, a cone center position at 69.54◦/64.11◦ (RA/Dec J2000 equatorial coordinates), and a precession period of 10.7 days. For the definition of zero longitude (x-axis orientation), we finally selected the boulder-like Cheops feature on the big lobe of 67P and fixed its spherical coordinates to 142.35◦ right-hand-rule eastern longitude and –0.28◦ latitude. This completes the definition of the new Cheops reference frame for 67P. Finally, we defined cartographic mapping standards for common use and combined analyses of scientific results that have been obtained not only within the OSIRIS team, but also within other groups of the Rosetta mission.


Science | 2011

Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System

H. Sierks; P. L. Lamy; Cesare Barbieri; D. Koschny; Hans Rickman; R. Rodrigo; Michael F. A'Hearn; F. Angrilli; M. A. Barucci; Jean-Loup Bertaux; I. Bertini; Sebastien Besse; B. Carry; G. Cremonese; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco; J. de León; F. Ferri; S. Fornasier; M. Fulle; S. F. Hviid; Robert W. Gaskell; Olivier Groussin; Pedro J. Gutierrez; Wing-Huen Ip; L. Jorda; Mikko Kaasalainen; H. U. Keller

A spacecraft flyby of an asteroid reveals a high-density body that is more like a planetesimal than a rubble pile. Images obtained by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras onboard the Rosetta spacecraft reveal that asteroid 21 Lutetia has a complex geology and one of the highest asteroid densities measured so far, 3.4 ± 0.3 grams per cubic centimeter. The north pole region is covered by a thick layer of regolith, which is seen to flow in major landslides associated with albedo variation. Its geologically complex surface, ancient surface age, and high density suggest that Lutetia is most likely a primordial planetesimal. This contrasts with smaller asteroids visited by previous spacecraft, which are probably shattered bodies, fragments of larger parents, or reaccumulated rubble piles.


Astronomy and Astrophysics | 2015

Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the Rosetta spacecraft

S. Fornasier; P. H. Hasselmann; M. A. Barucci; C. Feller; Sebastien Besse; C. Leyrat; Luisa M. Lara; Pedro J. Gutierrez; N. Oklay; C. Tubiana; Frank Scholten; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Jessica Agarwal; Michael F. A’Hearn; I. Bertini; G. Cremonese; Vania Da Deppo; B. Davidsson; Stefano Debei; Mariolino De Cecco; M. Fulle; Olivier Groussin; C. Güttler; S. F. Hviid

The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3°–54°). The resolution reached up to 2.1 m/px. Methods. The OSIRIS images were processed with the OSIRIS standard pipeline, then converted into I/F radiance factors and corrected for the illumination conditions at each pixel using the Lommel-Seeliger disk law. Color cubes of the surface were produced by stacking registered and illumination-corrected images. Furthermore, photometric analysis was performed both on disk-averaged photometry in several filters and on disk-resolved images acquired with the NAC orange filter, centered at 649 nm, using Hapke modeling. Results. The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of - 0.13±0.01 in the HG system formalism and an absolute magnitude Hv (1, 1, 0) = 15.74±0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at ∼ 290 nm that is possibly due to SO2 ice. The nucleus shows strong phase reddening, with disk- averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3°–54° phase angle range. The geometric albedo of the comet is 6.5±0.2% at 649 nm, with local variations of up to ∼ 16% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions.


Nature | 2015

Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse

Jean-Baptiste Vincent; D. Bodewits; Sebastien Besse; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Jessica Agarwal; Michael F. A'Hearn; Anne-Thérèse Auger; M. Antonella Barucci; Ivano Bertini; Claire Capanna; G. Cremonese; Vania Da Deppo; Bjoern Davidsson; Stefano Debei; Mariolino De Cecco; M. R. El-Maarry; Francesca Ferri; S. Fornasier; M. Fulle; Robert W. Gaskell; Lorenza Giacomini; Olivier Groussin; A. Guilbert-Lepoutre; Pablo Gutierrez-Marques

Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov–Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.

Collaboration


Dive into the Olivier Groussin's collaboration.

Researchain Logo
Decentralizing Knowledge