Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Hantz is active.

Publication


Featured researches published by Olivier Hantz.


Journal of Hepatology | 2011

Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection

Julie Lucifora; Silke Arzberger; David Durantel; L. Belloni; Michel Strubin; Massimo Levrero; Fabien Zoulim; Olivier Hantz; Ulrike Protzer

BACKGROUND & AIMS The molecular biology of hepatitis B virus (HBV) has been extensively studied but the exact role of the hepatitis B X protein (HBx) in the context of natural HBV infections remains unknown. METHODS Primary human hepatocytes and differentiated HepaRG cells allowing conditional trans complementation of HBx were infected with wild type (HBV(wt)) or HBx deficient (HBV(x-)) HBV particles and establishment of HBV replication was followed. RESULTS We observed that cells inoculated with HBx-deficient HBV particles (HBV(x-)) did not lead to productive HBV infection contrary to cells inoculated with wild type HBV particles (HBV(wt)). Although equal amounts of nuclear covalently closed circular HBV-DNA (cccDNA) demonstrated comparable uptake and nuclear import, active transcription was only observed from HBV(wt) genomes. Trans-complementation of HBx was able to rescue transcription from the HBV(x-) genome and led to antigen and virion secretion, even weeks after infection. Constant expression of HBx was necessary to maintain HBV antigen expression and replication. Finally, we demonstrated that HBx is not packaged into virions during assembly but is expressed after infection within the new host cell to allow epigenetic control of HBV transcription from cccDNA. CONCLUSIONS Our results demonstrate that HBx is required to initiate and maintain HBV replication and highlight HBx as the key regulator during the natural infection process.


Hepatology | 2010

Control of hepatitis B virus replication by innate response of HepaRG cells

Julie Lucifora; David Durantel; B. Testoni; Olivier Hantz; Massimo Levrero; Fabien Zoulim

Hepatitis B virus (HBV) is currently viewed as a stealth virus that does not elicit innate immunity in vivo. This assumption has not yet been challenged in vitro because of the lack of a relevant cell culture system. The HepaRG cell line, which is physiologically closer to differentiated hepatocytes and permissive to HBV infection, has opened new perspectives in this respect.HBV baculoviruses were used to initiate an HBV replication in both HepG2 and HepaRG cells. To monitor HBV replication, the synthesis of encapsidated DNA, and secretion of hepatitis B surface antigen (HBsAg), was respectively analyzed by southern blot and enzyme‐linked immunosorbent assay. The induction of a type I interferon (IFN) response was monitored by targeted quantitative reverse transcription polymerase chain reaction (qRT‐PCR), low‐density arrays, and functional assays. The invalidation of type I IFN response was obtained by either antibody neutralization or RNA interference. We demonstrate that HBV elicits a strong and specific innate antiviral response that results in a noncytopathic clearance of HBV DNA in HepaRG cells. Challenge experiment showed that transduction with Bac‐HBV‐WT, but not with control baculoviruses, leads to this antiviral response in HepaRG cells, whereas no antiviral response is observed in HepG2 cells. Cellular gene expression analyses showed that IFN‐β and other IFN‐stimulated genes were up‐regulated in HepG2 and HepaRG cells, but not in cells transduced by control baculoviruses. Interestingly, a rescue of viral replication was observed when IFN‐β action was neutralized by antibodies or RNA interference of type I IFN receptor. Conclusion: Our data suggest that a strong HBV replication is able to elicit a type I IFN response in HepaRG‐transduced cells. (HEPATOLOGY 2009.)


Nature | 2016

Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor

Adrien Decorsiere; Henrik Mueller; Pieter Cornelis Van Breugel; Fabien Abdul; Laetitia Gerossier; Rudolf K. F. Beran; Christine M. Livingston; Congrong Niu; Simon P Fletcher; Olivier Hantz; Michel Strubin

Chronic hepatitis B virus infection is a leading cause of cirrhosis and liver cancer. Hepatitis B virus encodes the regulatory HBx protein whose primary role is to promote transcription of the viral genome, which persists as an extrachromosomal DNA circle in infected cells. HBx accomplishes this task by an unusual mechanism, enhancing transcription only from extrachromosomal DNA templates. Here we show that HBx achieves this by hijacking the cellular DDB1-containing E3 ubiquitin ligase to target the ‘structural maintenance of chromosomes’ (Smc) complex Smc5/6 for degradation. Blocking this event inhibits the stimulatory effect of HBx both on extrachromosomal reporter genes and on hepatitis B virus transcription. Conversely, silencing the Smc5/6 complex enhances extrachromosomal reporter gene transcription in the absence of HBx, restores replication of an HBx-deficient hepatitis B virus, and rescues wild-type hepatitis B virus in a DDB1-knockdown background. The Smc5/6 complex associates with extrachromosomal reporters and the hepatitis B virus genome, suggesting a direct mechanism of transcriptional inhibition. These results uncover a novel role for the Smc5/6 complex as a restriction factor selectively blocking extrachromosomal DNA transcription. By destroying this complex, HBx relieves the inhibition to allow productive hepatitis B virus gene expression.


Antimicrobial Agents and Chemotherapy | 2002

Inhibitory Effect of Adefovir on Viral DNA Synthesis and Covalently Closed Circular DNA Formation in Duck Hepatitis B Virus-Infected Hepatocytes In Vivo and In Vitro

Julien Delmas; Olivier Schorr; Catherine Jamard; Craig Gibbs; Christian Trepo; Olivier Hantz; Fabien Zoulim

ABSTRACT The elimination of viral covalently closed circular DNA (CCC DNA) from the nucleus of infected hepatocytes is an obstacle to achieving sustained viral clearance during antiviral therapy of chronic hepatitis B virus (HBV) infection. The aim of our study was to determine whether treatment with adefovir, a new acyclic nucleoside phosphonate, the prodrug of which, adefovir dipivoxil, is in clinical evaluation, is able to suppress viral CCC DNA both in vitro and in vivo using the duck HBV (DHBV) model. First, the effect of adefovir on viral CCC DNA synthesis was examined with primary cultures of DHBV-infected fetal hepatocytes. Adefovir was administered for six consecutive days starting one day before or four days after DHBV inoculation. Dose-dependent inhibition of both virion release in culture supernatants and synthesis of intracellular viral DNA was observed. Although CCC DNA amplification was inhibited by adefovir, CCC DNA was not eliminated by antiviral treatment and the de novo formation of CCC DNA was not prevented by pretreatment of the cells. Next, preventive treatment of experimentally infected ducklings with lamivudine or adefovir revealed that both efficiently suppressed viremia and intrahepatic DNA. However, persistence of viral DNA even when detectable only by PCR was associated with a recurrence of viral replication following drug withdrawal. Taken together, our results demonstrate that adefovir is a potent inhibitor of DHBV replication that inhibits CCC DNA amplification but does not effectively prevent the formation of CCC DNA from incoming viral genomes.


Hepatology | 2008

Hepatitis B virus X protein affects S phase progression leading to chromosome segregation defects by binding to damaged DNA binding protein 1

Silvia Martin‐Lluesma; Céline Schaeffer; Eva Robert; Pieter Cornelis Van Breugel; Olivier Leupin; Olivier Hantz; Michel Strubin

Chronic hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma (HCC), but its role in the transformation process remains unclear. HBV encodes a small protein, known as HBx, which is required for infection and has been implicated in hepatocarcinogenesis. Here we show that HBx induces lagging chromosomes during mitosis, which in turn leads to formation of aberrant mitotic spindles and multinucleated cells. These effects require the binding of HBx to UV‐damaged DNA binding protein 1 (DDB1), a protein involved in DNA repair and cell cycle regulation, and are unexpectedly attributable to HBx interfering with S‐phase progression and not directly with mitotic events. HBx also affects S‐phase and induces lagging chromosomes when expressed from its natural viral context and, consequently, exhibits deleterious activities in dividing, but not quiescent, hepatoma cells. Conclusion: In addition to its reported role in promoting HBV replication, the binding of HBx to DDB1 may induce genetic instability in regenerating hepatocytes and thereby contribute to HCC development, thus making this HBV–host protein interaction an attractive target for new therapeutic intervention. (HEPATOLOGY 2008.)


Antimicrobial Agents and Chemotherapy | 2000

Characterization of the Antiviral Effect of 2′,3′-Dideoxy-2′, 3′-Didehydro-β-l-5-Fluorocytidine in the Duck Hepatitis B Virus Infection Model

Franck Le Guerhier; Christian Pichoud; Sylviane Guerret; Michèle Chevallier; Catherine Jamard; Olivier Hantz; Xiuyan Li; Shu-Hui Chen; Ivan King; Christian Trepo; Yung-Chi Cheng; Fabien Zoulim

ABSTRACT A novel l-nucleoside analog of deoxycytidine, 2′,3′-dideoxy-2′,3′-didehydro-β-l-5-fluorocytidine (β-l-Fd4C), was recently shown to strongly inhibit hepatitis B virus (HBV) replication in the 2.2.15 cell line. Therefore, its antiviral activity was evaluated in the duck HBV (DHBV) infection model. Using a cell-free system for the expression of the DHBV polymerase, β-l-Fd4C-TP exhibited a concentration-dependent inhibition of dCTP incorporation into viral minus-strand DNA with a 50% inhibitory concentration of 0.2 μM which was lower than that of other tested deoxycytidine analogs, i.e., lamivudine-TP, ddC-TP, and β-l-FddC-TP. Further analysis showed that β-l-Fd4C-TP is likely to be a competitive inhibitor of dCTP incorporation and to cause premature DNA chain termination. In primary duck hepatocyte cultures infected in vitro, β-l-Fd4C administration exhibited a long-lasting inhibitory effect on viral DNA synthesis but could not clear viral covalently closed circular DNA (CCC DNA). Results of short-term antiviral treatment in experimentally infected ducklings showed that β-l-Fd4C exhibited the most potent antiviral effect, followed by β-l-FddC, lamivudine, and ddC. Longer administration of β-l-Fd4C induced a sustained suppression of viremia (>95% of controls) and of viral DNA synthesis within the liver. However, the persistence of trace amounts of viral CCC DNA detected only by PCR was associated with a recurrence of viral replication after drug withdrawal. In parallel, β-l-Fd4C treatment suppressed viral antigen expression within the liver and decreased intrahepatic inflammation and was not associated with any sign of toxicity. Our data, therefore, demonstrate that in the duck model of HBV infection, β-l-Fd4C is a potent inhibitor of DHBV reverse transcriptase activity in vitro and suppresses viral replication in the liver in vivo.


The Journal of Infectious Diseases | 2000

Evolution of Hepatitis B Virus Polymerase Gene Sequence during Famciclovir Therapy for Chronic Hepatitis B

Béatrice Seignères; Christian Pichoud; Sinafa Si Ahmed; Olivier Hantz; Christian Trepo; Fabien Zoulim

Prolonged administration of nucleoside analogues for chronic hepatitis B may result in the emergence of hepatitis B viral polymerase mutants. To gain insight into the mechanism involved in the viruss resistance to famciclovir, the amino acid sequences of the terminal protein and reverse-transcriptase (RT) domains of the viral polymerase were determined during therapy among 28 patients. The antiviral response was independent of viral genotypes, and nonresponse to famciclovir was associated with a complex variability of the RT domain. No mutation in the YMDD motif was observed, whereas an L528M mutation was clearly selected by famciclovir treatment in 2 patients, as well as 14 novel mutations in 7 patients. Clone sequence analysis of the RT domains of patients undergoing retreatment with famciclovir and/or lamivudine showed the selection of a preexisting drug-resistant mutant in one case and indicated that sequential antiviral therapy may allow the rapid selection of resistant strains.


Gastroenterology | 2009

In Vitro Characterization of Viral Fitness of Therapy-Resistant Hepatitis B Variants

S. Villet; Gaëtan Billioud; Christian Pichoud; Julie Lucifora; Olivier Hantz; Camille Sureau; Paul Dény; Fabien Zoulim

BACKGROUND & AIMS Because of the overlapping of polymerase and envelope genes in the hepatitis B virus (HBV) genome, nucleoside analog therapy can lead to the emergence of complex HBV variants that harbor mutations in both the reverse transcriptase and the envelope proteins. To understand the selection process of HBV variants during antiviral therapy, we analyzed the in vitro fitness (the ability to produce infectious progeny) of 4 mutant viral genomes isolated from one patient who developed resistance to a triple therapy (lamivudine, adefovir, and anti-HBV immunoglobulins). METHODS The 4 mutant and the wild-type forms of HBV were expressed from vectors in hepatoma cell lines; replication and viral particle secretion capacities then were analyzed. The impact of envelope gene mutations on infectivity was tested in HepaRG cells using the hepatitis delta virus (HDV) model as a reporter for infection. RESULTS The dominant HBV variant characterized from the therapy-resistant patient was found to have the best replicative capacity in vitro in the presence of high concentrations of lamivudine and adefovir. The expression of envelope proteins and secretion of subviral and Dane particles by this mutant was comparable with that of wild-type HBV. HDV particles enveloped by surface proteins from the selected mutant had the highest rates of infection in HepaRG cells compared with other mutants. CONCLUSIONS These results illustrate the importance of viral fitness and infectivity as a major determinant of antiviral therapy resistance in patients. Understanding HBV mutant selection in vivo will help to optimize new anti-HBV therapeutic strategies.


Journal of Hepatology | 2015

HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase

Lise Rivière; Laetitia Gerossier; Aurélie Ducroux; Sarah Dion; Qiang Deng; Marie-Louise Michel; Olivier Hantz; Christine Neuveut

BACKGROUND & AIMS Maintenance of the covalently closed circular HBV DNA (cccDNA) that serves as a template for HBV transcription is responsible for the failure of antiviral therapies. While studies in chronic hepatitis patients have shown that high viremia correlates with hyperacetylation of cccDNA-associated histones, the molecular mechanisms controlling cccDNA stability and transcriptional regulation are still poorly understood. This study aimed to decipher the role of chromatin and chromatin modifier proteins on HBV transcription. METHODS We analyzed the chromatin structure of actively transcribed or silenced cccDNA by infecting primary human hepatocytes and differentiated HepaRG cells with wild-type virus or virus deficient (HBVX-) for the expression of hepatitis B virus X protein (HBx), that is required for HBV expression. RESULTS In the absence of HBx, HBV cccDNA was transcriptionally silenced with the concomitant decrease of histone 3 (H3) acetylation and H3K4me3, increase of H3 di- and tri-methylation (H3K9me) and the recruitment of heterochromatin protein 1 factors (HP1) that correlate with condensed chromatin. SETDB1 was found to be the main histone methyltransferase responsible for the deposition of H3K9me3 and HBV repression. Finally, full transcriptional reactivation of HBVX- upon HBx re-expression correlated with an increase of histone acetylation and H3K4me3, and a concomitant decrease of HP1 binding and of H3K9me3 on the cccDNA. CONCLUSION Upon HBV infection, cellular mechanisms involving SETDB1-mediated H3K9me3 and HP1 induce silencing of HBV cccDNA transcription through modulation of chromatin structure. HBx is able to relieve this repression and allow the establishment of active chromatin.


Methods of Molecular Biology | 2010

The HepaRG cell line: biological properties and relevance as a tool for cell biology, drug metabolism, and virology studies.

Marie-Jeanne Marion; Olivier Hantz; David Durantel

Liver progenitor cells may play an important role in carcinogenesis in vivo and represent therefore useful cellular materials for in vitro studies. The HepaRG cell line, which is a human bipotent progenitor cell line capable to differentiate toward two different cell phenotypes (i.e., biliary-like and hepatocyte-like cells), has been established from a liver tumor associated with chronic hepatitis C. This cell line represents a valuable alternative to ex vivo cultivated primary human hepatocytes (PHH), as HepaRG cells share some features and properties with adult hepatocytes. The cell line is particularly useful to evaluate drugs and perform drug metabolism studies, as many detoxifying enzymes are expressed and functional. It is also an interesting tool to study some aspect of progenitor biology (e.g., differentiation process), carcinogenesis, and the infection by some pathogens for which the cell line is permissive (e.g., HBV infection). Overall, this chapter gives a concise overview of the biological properties and potential applications of this cell line.

Collaboration


Dive into the Olivier Hantz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles Gosselin

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge