Olivier Helynck
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier Helynck.
PLOS Pathogens | 2013
Marianne Lucas-Hourani; Daniel Dauzonne; Pierre Jorda; Gaëlle Cousin; Alexandru Lupan; Olivier Helynck; Grégory Caignard; Geneviève Janvier; Gwénaëlle André-Leroux; Samira Khiar; Nicolas Escriou; Philippe Desprès; Yves Jacob; Hélène Munier-Lehmann; Frédéric Tangy; Pierre-Olivier Vidalain
Searching for stimulators of the innate antiviral response is an appealing approach to develop novel therapeutics against viral infections. Here, we established a cell-based reporter assay to identify compounds stimulating expression of interferon-inducible antiviral genes. DD264 was selected out of 41,353 compounds for both its immuno-stimulatory and antiviral properties. While searching for its mode of action, we identified DD264 as an inhibitor of pyrimidine biosynthesis pathway. This metabolic pathway was recently identified as a prime target of broad-spectrum antiviral molecules, but our data unraveled a yet unsuspected link with innate immunity. Indeed, we showed that DD264 or brequinar, a well-known inhibitor of pyrimidine biosynthesis pathway, both enhanced the expression of antiviral genes in human cells. Furthermore, antiviral activity of DD264 or brequinar was found strictly dependent on cellular gene transcription, nuclear export machinery, and required IRF1 transcription factor. In conclusion, the antiviral property of pyrimidine biosynthesis inhibitors is not a direct consequence of pyrimidine deprivation on the virus machinery, but rather involves the induction of cellular immune response.
PLOS Neglected Tropical Diseases | 2013
Nathalie Aulner; Anne Danckaert; Eline Rouault-Hardoin; Julie Desrivot; Olivier Helynck; Pierre-Henri Commere; Hélène Munier-Lehmann; Gerald F. Späth; Spencer Shorte; Geneviève Milon; Eric Prina
Background/Objectives Human leishmaniases are parasitic diseases causing severe morbidity and mortality. No vaccine is available and numerous factors limit the use of current therapies. There is thus an urgent need for innovative initiatives to identify new chemotypes displaying selective activity against intracellular Leishmania amastigotes that develop and proliferate inside macrophages, thereby causing the pathology of leishmaniasis. Methodology/Principal Findings We have developed a biologically sound High Content Analysis assay, based on the use of homogeneous populations of primary mouse macrophages hosting Leishmania amazonensis amastigotes. In contrast to classical promastigote-based screens, our assay more closely mimics the environment where intracellular amastigotes are growing within acidic parasitophorous vacuoles of their host cells. This multi-parametric assay provides quantitative data that accurately monitors the parasitic load of amastigotes-hosting macrophage cultures for the discovery of leishmanicidal compounds, but also their potential toxic effect on host macrophages. We validated our approach by using a small set of compounds of leishmanicidal drugs and recently published chemical entities. Based on their intramacrophagic leishmanicidal activity and their toxicity against host cells, compounds were classified as irrelevant or relevant for entering the next step in the drug discovery pipeline. Conclusions/Significance Our assay represents a new screening platform that overcomes several limitations in anti-leishmanial drug discovery. First, the ability to detect toxicity on primary macrophages allows for discovery of compounds able to cross the membranes of macrophage, vacuole and amastigote, thereby accelerating the hit to lead development process for compounds selectively targeting intracellular parasites. Second, our assay allows discovery of anti-leishmanials that interfere with biological functions of the macrophage required for parasite development and growth, such as organelle trafficking/acidification or production of microbicidal effectors. These data thus validate a novel phenotypic screening assay using virulent Leishmania amastigotes growing inside primary macrophage to identify new chemical entities with bona fide drug potential.
Journal of Antimicrobial Chemotherapy | 2013
Ute Zeidler; Marie-Elisabeth Bougnoux; Alexandru Lupan; Olivier Helynck; Antonia Doyen; Zacarias Garcia; Natacha Sertour; Cécile Clavaud; Hélène Munier-Lehmann; Cosmin Saveanu; Christophe d'Enfert
OBJECTIVES Candida albicans is the most prevalent fungal pathogen of humans, causing a wide range of infections from harmless superficial to severe systemic infections. Improvement of the antifungal arsenal is needed since existing antifungals can be associated with limited efficacy, toxicity and antifungal resistance. Here we aimed to identify compounds that act synergistically with echinocandin antifungals and that could contribute to a faster reduction of the fungal burden. METHODS A total of 38 758 compounds were tested for their ability to act synergistically with aminocandin, a β-1,3-glucan synthase inhibitor of the echinocandin family of antifungals. The synergy between echinocandins and an identified hit was studied with chemogenomic screens and testing of individual Saccharomyces cerevisiae and C. albicans mutant strains. RESULTS We found that colistin, an antibiotic that targets membranes in Gram-negative bacteria, is synergistic with drugs of the echinocandin family against all Candida species tested. The combination of colistin and aminocandin led to faster and increased permeabilization of C. albicans cells than either colistin or aminocandin alone. Echinocandin susceptibility was a prerequisite to be able to observe the synergy. A large-scale screen for genes involved in natural resistance of yeast cells to low doses of the drugs, alone or in combination, identified efficient sphingolipid and chitin biosynthesis as necessary to protect S. cerevisiae and C. albicans cells against the antifungal combination. CONCLUSIONS These results suggest that echinocandin-mediated weakening of the cell wall facilitates colistin targeting of fungal membranes, which in turn reinforces the antifungal activity of echinocandins.
Journal of Medicinal Chemistry | 2015
Hélène Munier-Lehmann; Marianne Lucas-Hourani; Sandrine Guillou; Olivier Helynck; Gigliola Zanghi; Anne Noel; Frédéric Tangy; Pierre-Olivier Vidalain; Yves L. Janin
From a research program aimed at the design of new chemical entities followed by extensive screening on various models of infectious diseases, an original series of 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidines endowed with notable antiviral properties were found. Using a whole cell measles virus replication assay, we describe here some aspects of the iterative process that, from 2-(4-benzyl-3-ethoxy-5-methyl-1H-pyrazol-1-yl)pyrimidine, led to 2-(4-(2,6-difluorophenoxy)-3-isopropoxy-5-methyl-1H-pyrazol-1-yl)-5-ethylpyrimidine and a 4000-fold improvement of antiviral activity with a subnanomolar level of inhibition. Moreover, recent precedents in the literature describing antiviral derivatives acting at the level of the de novo pyrimidine biosynthetic pathway led us to determine that the mode of action of this series is based on the inhibition of the cellular dihydroorotate dehydrogenase (DHODH), the fourth enzyme of this pathway. Biochemical studies with recombinant human DHODH led us to measure IC50 as low as 13 nM for the best example of this original series when using 2,3-dimethoxy-5-methyl-6-(3-methyl-2-butenyl)-1,4-benzoquinone (coenzyme Q1) as a surrogate for coenzyme Q10, the cofactor of this enzyme.
Journal of Medicinal Chemistry | 2015
Marianne Lucas-Hourani; Hélène Munier-Lehmann; Farah El Mazouni; Nicholas A. Malmquist; Jane Harpon; Eloi P. Coutant; Sandrine Guillou; Olivier Helynck; Anne Noel; Artur Scherf; Margaret A. Phillips; Frédéric Tangy; Pierre-Olivier Vidalain; Yves L. Janin
Following our discovery of human dihydroorotate dehydrogenase (DHODH) inhibition by 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidine derivatives as well as 2-(4-benzyl-3-ethoxy-5-methyl-1H-pyrazol-1-yl)-5-methylpyridine, we describe here the syntheses and evaluation of an array of azine-bearing analogues. As in our previous report, the structure–activity study of this series of human DHODH inhibitors was based on a phenotypic assay measuring measles virus replication. Among other inhibitors, this round of syntheses and biological evaluation iteration led to the highly active 5-cyclopropyl-2-(4-(2,6-difluorophenoxy)-3-isopropoxy-5-methyl-1H-pyrazol-1-yl)-3-fluoropyridine. Inhibition of DHODH by this compound was confirmed in an array of in vitro assays, including enzymatic tests and cell-based assays for viral replication and cellular growth. This molecule was found to be more active than the known inhibitors of DHODH, brequinar and teriflunomide, thus opening perspectives for its use as a tool or for the design of an original series of immunosuppressive agent. Moreover, because other series of inhibitors of human DHODH have been found to also affect Plasmodium falciparum DHODH, all the compounds were assayed for their effect on P. falciparum growth. However, the modest in vitro inhibition solely observed for two compounds did not correlate with their inhibition of P. falciparum DHODH.
Journal of Visualized Experiments | 2014
Marianne Lucas-Hourani; Hélène Munier-Lehmann; Olivier Helynck; Anastassia V. Komarova; Philippe Desprès; Frédéric Tangy; Pierre-Olivier Vidalain
RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, Hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. A good example of such an emerging situation is chikungunya virus epidemics of 2005-2006 in the Indian Ocean. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. Some broad-spectrum antiviral compounds have been identified with host target-oriented assays. However, measuring the inhibition of viral replication in cell cultures using reduction of cytopathic effects as a readout still represents a paramount screening strategy. Such functional screens have been greatly improved by the development of recombinant viruses expressing reporter enzymes capable of bioluminescence such as luciferase. In the present report, we detail a high-throughput screening pipeline, which combines recombinant measles and chikungunya viruses with cellular viability assays, to identify compounds with a broad-spectrum antiviral profile.
Antimicrobial Agents and Chemotherapy | 2016
Shriya Raj; Karthik Krishnan; David S. Askew; Olivier Helynck; Peggy Suzanne; Aureslien Lesnard; Sylvain Rault; Ute Zeidler; Christophe d'Enfert; Jean-Paul Latgé; Hélène Munier-Lehmann; Cosmin Saveanu
ABSTRACT In a search for new antifungal compounds, we screened a library of 4,454 chemicals for toxicity against the human fungal pathogen Aspergillus fumigatus. We identified sr7575, a molecule that inhibits growth of the evolutionary distant fungi A. fumigatus, Cryptococcus neoformans, Candida albicans, and Saccharomyces cerevisiae but lacks acute toxicity for mammalian cells. To gain insight into the mode of inhibition, sr7575 was screened against 4,885 S. cerevisiae mutants from the systematic collection of haploid deletion strains and 977 barcoded haploid DAmP (decreased abundance by mRNA perturbation) strains in which the function of essential genes was perturbed by the introduction of a drug resistance cassette downstream of the coding sequence region. Comparisons with previously published chemogenomic screens revealed that the set of mutants conferring sensitivity to sr7575 was strikingly narrow, affecting components of the endoplasmic reticulum-associated protein degradation (ERAD) stress response and the ER membrane protein complex (EMC). ERAD-deficient mutants were hypersensitive to sr7575 in both S. cerevisiae and A. fumigatus, indicating a conserved mechanism of growth inhibition between yeast and filamentous fungi. Although the unfolded protein response (UPR) is linked to ERAD regulation, sr7575 did not trigger the UPR in A. fumigatus and UPR mutants showed no enhanced sensitivity to the compound. The data from this chemogenomic analysis demonstrate that sr7575 exerts its antifungal activity by disrupting ER protein quality control in a manner that requires ERAD intervention but bypasses the need for the canonical UPR. ER protein quality control is thus a specific vulnerability of fungal organisms that might be exploited for antifungal drug development.
Scientific Reports | 2017
Samira Khiar; Marianne Lucas-Hourani; Sébastien Nisole; Nikaïa Smith; Olivier Helynck; Maryline Bourgine; Claude Ruffié; Jean-Philippe Herbeuval; Hélène Munier-Lehmann; Frédéric Tangy; Pierre-Olivier Vidalain
The type I interferon response plays a pivotal role in host defense against infectious agents and tumors, and promising therapeutic approaches rely on small molecules designed to boost this system. To identify such compounds, we developed a high-throughput screening assay based on HEK-293 cells expressing luciferase under the control of Interferon-Stimulated Response Elements (ISRE). An original library of 10,000 synthetic compounds was screened, and we identified a series of 1H-benzimidazole-4-carboxamide compounds inducing the ISRE promoter sequence, specific cellular Interferon-Stimulated Genes (ISGs), and the phosphorylation of Interferon Regulatory Factor (IRF) 3. ISRE induction by ChX710, a prototypical member of this chemical series, was dependent on the adaptor MAVS and IRF1, but was IRF3 independent. Although it was unable to trigger type I IFN secretion per se, ChX710 efficiently primed cellular response to transfected plasmid DNA as assessed by potent synergistic effects on IFN-β secretion and ISG expression levels. This cellular response was dependent on STING, a key adaptor involved in the sensing of cytosolic DNA and immune activation by various pathogens, stress signals and tumorigenesis. Our results demonstrate that cellular response to cytosolic DNA can be boosted with a small molecule, and potential applications in antimicrobial and cancer therapies are discussed.
Antimicrobial Agents and Chemotherapy | 2017
Marianne Lucas-Hourani; Daniel Dauzonne; Hélène Munier-Lehmann; Samira Khiar; Sébastien Nisole; Julien Dairou; Olivier Helynck; Philippe V. Afonso; Frédéric Tangy; Pierre-Olivier Vidalain
ABSTRACT De novo pyrimidine biosynthesis is a key metabolic pathway involved in multiple biosynthetic processes. Here, we identified an original series of 3-(1H-indol-3-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one derivatives as a new class of pyrimidine biosynthesis inhibitors formed by two edge-fused polycyclic moieties. We show that identified compounds exhibit broad-spectrum antiviral activity and immunostimulatory properties, in line with recent reports linking de novo pyrimidine biosynthesis with innate defense mechanisms against viruses. Most importantly, we establish that pyrimidine deprivation can amplify the production of both type I and type III interferons by cells stimulated with retinoic acid-inducible gene 1 (RIG-I) ligands. Altogether, our results further expand the current panel of pyrimidine biosynthesis inhibitors and illustrate how the production of antiviral interferons is tightly coupled to this metabolic pathway. Functional and structural similarities between this new chemical series and dicoumarol, which was reported before to inhibit pyrimidine biosynthesis at the dihydroorotate dehydrogenase (DHODH) step, are discussed.
Journal of Medicinal Chemistry | 2017
Maria Virginia Buchieri; Mena Cimino; Sonia Rebollo-Ramirez; Claire Beauvineau; Alessandro Cascioferro; Sandrine Favre-Rochex; Olivier Helynck; Delphine Naud-Martin; Gérald Larrouy-Maumus; Hélène Munier-Lehmann; Brigitte Gicquel
In this study, we aimed to decipher the natural resistance mechanisms of mycobacteria against novel compounds isolated by whole-cell-based high-throughput screening (HTS). We identified active compounds using Mycobacterium aurum. Further analyses were performed to determine the resistance mechanism of M. smegmatis against one hit, 3-bromo-N-(5-nitrothiazol-2-yl)-4-propoxybenzamide (3), which turned out to be an analog of the drug nitazoxanide (1). We found that the repression of the gene nfnB coding for the nitroreductase NfnB was responsible for the natural resistance of M. smegmatis against 3. The overexpression of nfnB resulted in sensitivity of M. smegmatis to 3. This compound must be metabolized into hydroxylamine intermediate for exhibiting antibacterial activity. Thus, we describe, for the first time, the activity of a mycobacterial nitroreductase against 1 analogs, highlighting the differences in the metabolism of nitro compounds among mycobacterial species and emphasizing the potential of nitro drugs as antibacterials in various bacterial species.