Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Jaillon is active.

Publication


Featured researches published by Olivier Jaillon.


Nature | 2007

The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla

Olivier Jaillon; Jean-Marc Aury; Benjamin Noel; Alberto Policriti; Christian Clepet; Alberto Casagrande; Nathalie Choisne; Sébastien Aubourg; Nicola Vitulo; Claire Jubin; Alessandro Vezzi; Fabrice Legeai; Philippe Hugueney; Corinne Dasilva; David S. Horner; Erica Mica; Delphine Jublot; Julie Poulain; Clémence Bruyère; Alain Billault; Béatrice Segurens; Michel Gouyvenoux; Edgardo Ugarte; Federica Cattonaro; Véronique Anthouard; Virginie Vico; Cristian Del Fabbro; Michael Alaux; Gabriele Di Gaspero; Vincent Dumas

The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.


Nature | 2004

Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype

Olivier Jaillon; Jean-Marc Aury; Frédéric Brunet; Jean-Louis Petit; Nicole Stange-Thomann; Evan Mauceli; Laurence Bouneau; Cécile Fischer; Catherine Ozouf-Costaz; Alain Bernot; Sophie Nicaud; David B. Jaffe; Sheila Fisher; Georges Lutfalla; Carole Dossat; Béatrice Segurens; Corinne Dasilva; Marcel Salanoubat; Michael Levy; Nathalie Boudet; Sergi Castellano; Véronique Anthouard; Claire Jubin; Vanina Castelli; Michael Katinka; Benoit Vacherie; Christian Biémont; Zineb Skalli; Laurence Cattolico; Julie Poulain

Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests ∼900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.


Nature Biotechnology | 2008

Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita

Pierre Abad; Jérôme Gouzy; Jean-Marc Aury; Philippe Castagnone-Sereno; Etienne Danchin; Emeline Deleury; Laetitia Perfus-Barbeoch; Véronique Anthouard; François Artiguenave; Vivian C Blok; Marie-Cécile Caillaud; Pedro M. Coutinho; Corinne Dasilva; Francesca De Luca; Florence Deau; Magali Esquibet; Timothé Flutre; Jared V. Goldstone; Noureddine Hamamouch; Tarek Hewezi; Olivier Jaillon; Claire Jubin; Paola Leonetti; Marc Magliano; Tom Maier; Gabriel V. Markov; Paul McVeigh; Julie Poulain; Marc Robinson-Rechavi; Erika Sallet

Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments. This suggests that ancient allelic regions in M. incognita are evolving toward effective haploidy, permitting new mechanisms of adaptation. The number and diversity of plant cell wall–degrading enzymes in M. incognita is unprecedented in any animal for which a genome sequence is available, and may derive from multiple horizontal gene transfers from bacterial sources. Our results provide insights into the adaptations required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new antiparasitic strategies.


Nature | 2006

Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia

Jean-Marc Aury; Olivier Jaillon; Laurent Duret; Benjamin Noel; Claire Jubin; Betina M. Porcel; Béatrice Segurens; Vincent Daubin; Véronique Anthouard; Nathalie Aiach; Olivier Arnaiz; Alain Billaut; Janine Beisson; Isabelle Blanc; Khaled Bouhouche; Francisco Câmara; Sandra Duharcourt; Roderic Guigó; Delphine Gogendeau; Michael Katinka; Anne-Marie Keller; Roland Kissmehl; Catherine Klotz; Anne Le Mouël; Gersende Lepère; Sophie Malinsky; Mariusz Nowacki; Jacek K. Nowak; Helmut Plattner; Julie Poulain

The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints.


Nature | 2012

The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.

Angélique D’Hont; Jean-Marc Aury; Franc-Christophe Baurens; Françoise Carreel; Olivier Garsmeur; Benjamin Noel; Stéphanie Bocs; Gaëtan Droc; Mathieu Rouard; Corinne Da Silva; Kamel Jabbari; Céline Cardi; Julie Poulain; Marlène Souquet; Karine Labadie; Cyril Jourda; Juliette Lengellé; Marguerite Rodier-Goud; Adriana Alberti; Maria Bernard; Margot Corréa; Saravanaraj Ayyampalayam; Michael R. McKain; Jim Leebens-Mack; Diane Burgess; Michael Freeling; Didier Mbéguié-A-Mbéguié; Matthieu Chabannes; Thomas Wicker; Olivier Panaud

Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon–eudicotyledon divergence.


Nature | 2010

Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis

Francis L. Martin; Annegret Kohler; Claude Murat; Raffaella Balestrini; Pedro M. Coutinho; Olivier Jaillon; Barbara Montanini; Emmanuelle Morin; Benjamin Noel; Riccardo Percudani; Bettina Porcel; Andrea Rubini; Antonella Amicucci; Joelle Amselem; Véronique Anthouard; Sergio Arcioni; François Artiguenave; Jean-Marc Aury; Paola Ballario; Angelo Bolchi; Andrea Brenna; Annick Brun; Marc Buee; Brandi Cantarel; Gérard Chevalier; Arnaud Couloux; Corinne Da Silva; Sébastien Duplessis; Stefano Ghignone; Benoı̂t Hilselberger

The Périgord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today’s truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a ‘symbiosis toolbox’. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at ∼125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for ∼58% of the genome. In contrast, this genome only contains ∼7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis—‘the symbiosis toolbox’—evolved along different ways in ascomycetes and basidiomycetes.


Science | 2015

Eukaryotic plankton diversity in the sunlit ocean

Colomban de Vargas; Stéphane Audic; Nicolas Henry; Johan Decelle; Frédéric Mahé; Ramiro Logares; Enrique Lara; Cédric Berney; Noan Le Bescot; Ian Probert; Margaux Carmichael; Julie Poulain; Sarah Romac; Sébastien Colin; Jean-Marc Aury; Lucie Bittner; Samuel Chaffron; Micah Dunthorn; Stefan Engelen; Olga Flegontova; Lionel Guidi; Aleš Horák; Olivier Jaillon; Gipsi Lima-Mendez; Julius Lukeš; Shruti Malviya; Raphaël Morard; Matthieu Mulot; Eleonora Scalco; Raffaele Siano

Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.


Science | 2015

Structure and function of the global ocean microbiome

Shinichi Sunagawa; Luis Pedro Coelho; Samuel Chaffron; Jens Roat Kultima; Karine Labadie; Guillem Salazar; Bardya Djahanschiri; Georg Zeller; Daniel R. Mende; Adriana Alberti; Francisco M. Cornejo-Castillo; Paul Igor Costea; Corinne Cruaud; Francesco d'Ovidio; Stefan Engelen; Isabel Ferrera; Josep M. Gasol; Lionel Guidi; Falk Hildebrand; Florian Kokoszka; Cyrille Lepoivre; Gipsi Lima-Mendez; Julie Poulain; Bonnie T. Poulos; Marta Royo-Llonch; Hugo Sarmento; Sara Vieira-Silva; Céline Dimier; Marc Picheral; Sarah Searson

Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems.


Nature Communications | 2014

The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates

Camille Berthelot; Frédéric Brunet; Domitille Chalopin; Amélie Juanchich; Maria Bernard; Benjamin Noel; Pascal Bento; Corinne Da Silva; Karine Labadie; Adriana Alberti; Jean-Marc Aury; Alexandra Louis; Patrice Dehais; Philippe Bardou; Jérôme Montfort; Christophe Klopp; Cédric Cabau; Christine Gaspin; Gary H. Thorgaard; Mekki Boussaha; Edwige Quillet; René Guyomard; Delphine Galiana; Julien Bobe; Jean-Nicolas Volff; Carine Genet; Patrick Wincker; Olivier Jaillon; Hugues Roest Crollius

Vertebrate evolution has been shaped by several rounds of whole-genome duplications (WGDs) that are often suggested to be associated with adaptive radiations and evolutionary innovations. Due to an additional round of WGD, the rainbow trout genome offers a unique opportunity to investigate the early evolutionary fate of a duplicated vertebrate genome. Here we show that after 100 million years of evolution the two ancestral subgenomes have remained extremely collinear, despite the loss of half of the duplicated protein-coding genes, mostly through pseudogenization. In striking contrast is the fate of miRNA genes that have almost all been retained as duplicated copies. The slow and stepwise rediploidization process characterized here challenges the current hypothesis that WGD is followed by massive and rapid genomic reorganizations and gene deletions.


Nature Genetics | 2000

Estimate of human gene number provided by genome- wide analysis using Tetraodon nigroviridis DNA sequence

Hugues Roest Crollius; Olivier Jaillon; Alain Bernot; Corinne Dasilva; Laurence Bouneau; Cécile Fischer; Patrick Wincker; Francis Quetier; William Saurin; Jean Weissenbach

The number of genes in the human genome is unknown, with estimates ranging from 50,000 to 90,000 (refs 1, 2), and to more than 140,000 according to unpublished sources. We have developed ‘Exofish’, a procedure based on homology searches, to identify human genes quickly and reliably. This method relies on the sequence of another vertebrate, the pufferfish Tetraodon nigroviridis, to detect conserved sequences with a very low background. Similar to Fugu rubripes , a marine pufferfish proposed by Brenner et al. as a model for genomic studies, T. nigroviridis is a more practical alternative with a genome also eight times more compact than that of human. Many comparisons have been made between F. rubripes and human DNA that demonstrate the potential of comparative genomics using the pufferfish genome. Application of Exofish to the December version of the working draft sequence of the human genome and to Unigene showed that the human genome contains 28,000–34,000 genes, and that Unigene contains less than 40% of the protein-coding fraction of the human genome.

Collaboration


Dive into the Olivier Jaillon's collaboration.

Top Co-Authors

Avatar

Patrick Wincker

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Benjamin Noel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean Weissenbach

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Véronique Anthouard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Béatrice Segurens

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Jubin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Arnaud Couloux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Betina M. Porcel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Corinne Dasilva

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge