Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Louisnard is active.

Publication


Featured researches published by Olivier Louisnard.


Chemical Engineering Journal | 2002

Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate

Nathalie Lyczko; Fabienne Espitalier; Olivier Louisnard; Jacques Schwartzentruber

Abstract A study of cooling crystallisation of a potassium sulphate solution in a batch reactor is described in this paper. The effect of ultrasound on primary nucleation was investigated by measures of induction time and metastable zone width of unseeded solutions. The appearance of crystals is detected by conductivity measurements. The experimental results show that ultrasound has an effect on the primary nucleation of potassium sulphate. Ultrasound allows induction time and metastable zone width to be significantly reduced.


Ultrasonics Sonochemistry | 2012

A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures.

Olivier Louisnard

In a companion paper, a reduced model for propagation of acoustic waves in a cloud of inertial cavitation bubbles was proposed. The wave attenuation was calculated directly from the energy dissipated by a single bubble, the latter being estimated directly from the fully nonlinear radial dynamics. The use of this model in a mono-dimensional configuration has shown that the attenuation near the vibrating emitter was much higher than predictions obtained from linear theory, and that this strong attenuation creates a large traveling wave contribution, even for closed domain where standing waves are normally expected. In this paper, we show that, owing to the appearance of traveling waves, the primary Bjerknes force near the emitter becomes very large and tends to expel the bubbles up to a stagnation point. Two-dimensional axi-symmetric computations of the acoustic field created by a large area immersed sonotrode are also performed, and the paths of the bubbles in the resulting Bjerknes force field are sketched. Cone bubble structures are recovered and compare reasonably well to reported experimental results. The underlying mechanisms yielding such structures is examined, and it is found that the conical structure is generic and results from the appearance a sound velocity gradient along the transducer area. Finally, a more complex system, similar to an ultrasonic bath, in which the sound field results from the flexural vibrations of a thin plate, is also simulated. The calculated bubble paths reveal the appearance of other commonly observed structures in such configurations, such as streamers and flare structures.


Ultrasonics Sonochemistry | 2009

FEM simulation of a sono-reactor accounting for vibrations of the boundaries

Olivier Louisnard; José González-García; Ignacio Tudela; J. Klima; V. Sáez; Y. Vargas-Hernandez

The chemical effects of acoustic cavitation are obtained in sono-reactors built-up from a vessel and an ultrasonic source. In this paper, simulations of an existing sono-reactor are carried out, using a linear acoustics model, accounting for the vibrations of the solid walls. The available frequency range of the generator (19-21 kHz) is systematically scanned. Global quantities are plotted as a function of frequency in order to obtain response curves, exhibiting several resonance peaks. In absence of the precise knowledge of the bubbles size distribution and spatial location, the attenuation coefficient of the wave is taken as a variable, but spatially uniform parameter, and its influence is studied. The concepts of acoustic energy, intensity, active power, and source impedance are recalled, along with the general balance equation for acoustic energy, which is used as a convergence check of the simulations. It is shown that the interface between the liquid and the solid walls cannot be correctly represented by the simple approximations of either infinitely soft, or infinitely hard boundaries. Moreover, the liquid-solid coupling allows the cooling jacket to receive a noticeable part of the input power, although it is not in direct contact with the sonotrode. It may therefore undergo cavitation and this feature opens the perspective to design sono-reactors which avoid direct contact between the working liquid and the sonotrode. Besides, the possibility to shift the main pressure antinode far from the sonotrode area by exciting a resonance of the system is examined.


Ultrasonics Sonochemistry | 2012

A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation

Olivier Louisnard

The bubbles involved in sonochemistry and other applications of cavitation oscillate inertially. A correct estimation of the wave attenuation in such bubbly media requires a realistic estimation of the power dissipated by the oscillation of each bubble, by thermal diffusion in the gas and viscous friction in the liquid. Both quantities and calculated numerically for a single inertial bubble driven at 20 kHz, and are found to be several orders of magnitude larger than the linear prediction. Viscous dissipation is found to be the predominant cause of energy loss for bubbles small enough. Then, the classical nonlinear Caflish equations describing the propagation of acoustic waves in a bubbly liquid are recast and simplified conveniently. The main harmonic part of the sound field is found to fulfill a nonlinear Helmholtz equation, where the imaginary part of the squared wave number is directly correlated with the energy lost by a single bubble. For low acoustic driving, linear theory is recovered, but for larger drivings, namely above the Blake threshold, the attenuation coefficient is found to be more than 3 orders of magnitude larger then the linear prediction. A huge attenuation of the wave is thus expected in regions where inertial bubbles are present, which is confirmed by numerical simulations of the nonlinear Helmholtz equation in a 1D standing wave configuration. The expected strong attenuation is not only observed but furthermore, the examination of the phase between the pressure field and its gradient clearly demonstrates that a traveling wave appears in the medium.


Ultrasonics Sonochemistry | 2010

Sonoelectrochemical treatment of water polluted with trichloroacetic acid: From sonovoltammetry to pre-pilot plant scale

María Deseada Esclapez; V. Sáez; D. Milán-Yáñez; Ignacio Tudela; Olivier Louisnard; José González-García

The sonoelectrochemical treatment of aqueous solutions of trichloroacetic acid (TCAA) has been scaled-up from the voltammetric analysis to pre-pilot stage. The degradation in absence of ultrasound field has yield to a poor performance which has been improved in presence of ultrasound. The sonovoltametry study has provided the range of potentials and/or current densities to be used with the lowest current efficiency penalty. Sonoelectrolyses at batch scale (carried out with a horn-transducer 24 kHz positioned at about 3 cm from the surface of the electrode) achieved little improvement in the degradation. However, when a specifically designed sonoelectrochemical reactor (not optimized) was used during the scale-up, the presence of ultrasound field provided better results (fractional conversion 97%, degradation efficiency 26%, selectivity 0.92 and current efficiency 8%) at lower ultrasonic intensities and volumetric flow.


Journal of Hazardous Materials | 2010

20 kHz sonoelectrochemical degradation of perchloroethylene in sodium sulfate aqueous media: influence of the operational variables in batch mode.

Verónica Sáez; María Deseada Esclapez; Ignacio Tudela; Pedro Bonete; Olivier Louisnard; José Ángel González-García

A preliminary study of the 20 kHz sonoelectrochemical degradation of perchloroethylene in aqueous sodium sulfate has been carried out using controlled current density degradation sonoelectrolyses in batch mode. An important improvement in the viability of the sonochemical process is achieved when the electrochemistry is implemented, but the improvement of the electrochemical treatment is lower when the 20 kHz ultrasound field is simultaneously used. A fractional conversion of 100% and degradation efficiency around 55% are obtained independently of the ultrasound power used. The current efficiency is also enhanced compared to the electrochemical treatment and a higher speciation is also detected; the main volatile compounds produced in the electrochemical and sonochemical treatment, trichloroethylene and dichloroethylene, are not only totally degraded, but also at shorter times than in the sonochemical or electrochemical treatments.


Journal of Fluid Mechanics | 2007

Segregation of a liquid mixture by a radially oscillating bubble

Olivier Louisnard; Francisco J. Gomez; Romain Grossier

A theoretical formulation is proposed for forced mass transport by pressure gradients in a liquid binary mixture around a spherical bubble undergoing volume oscillations in a sound field. Assuming the impermeability of the bubble wall to both species, diffusion driven by pressure gradients and classical Fick-diffusion must cancel at the bubble wall, so that an oscillatory concentration gradient arises in the vicinity of the bubble. The Peclet number pe is generally high in typical situations and Fick diffusion cannot restore equilibrium immediately, so that an asymptotic average concentration profile may progressively build up in the liquid over large times. Such a behaviour is reminiscent of the so-called rectified diffusion problem, leading to slow growth of a gas bubble oscillating in a sound field. A rigorous method formerly proposed by Fyrillas & Szeri ( J. Fluid Mech. vol. 277, 1994, p. 381) to solve the latter problem is used to solve the present one. It is based on splitting the problem into a smooth part and an oscillatory part. The smooth part is solved by a multiple scales method and yields the slowly varying average concentration field everywhere in the liquid. The oscillatory part is obtained by matched asymptotic expansions in terms of the small parameter pe −1/2 : the inner solution is required to satisfy the oscillatory balance between pressure diffusion and Fick diffusion at the bubble wall, while the outer solution is required to be zero. Matching both solutions yields a unique splitting of the problem. The final analytical solution, truncated to leading order, compares successfully to direct numerical simulation of the full convection–diffusion equation. The analytical expressions for both smooth and oscillatory parts are calculated for various sets of bubble parameters: driving pressure, frequency and ambient radius. The smooth problem always yields an average depletion of the heaviest species at the bubble wall, only noticeable for large molecules or nano-particles. For driving pressures sufficiently high to yield inertial oscillations of the bubble, the oscillatory problem predicts a periodic peak excess concentration of the heaviest species at the bubble wall at each collapse, lingering on several tens of the time of the characteristic duration of the bubble rebound. The two effects may compete for large molecules and practical implications of this segregation phenomenon are proposed for various processes involving acoustic cavitation.


Ultrasonics Sonochemistry | 2011

Sonochemical degradation of perchloroethylene: the influence of ultrasonic variables, and the identification of products.

V. Sáez; María Deseada Esclapez; Pedro Bonete; David J. Walton; A. Rehorek; Olivier Louisnard; José González-García

Sonochemistry is a technique that offers promise for pollutant degradation, but earlier studies on various chlorinated substrates do not give a definitive view of the effectiveness of this methodology. We now report a thorough study of ultrasonic operational variables upon perchloroethylene (PCE) degradation in water (variables include ultrasonic frequency, power and system geometry as well as substrate concentration) and we attempt to close the mass balance where feasible. We obtained fractional conversions of >97% showing very effective loss of pollutant starting material, and give mechanistic proposals for the reaction pathway based on cavitational phenomena inducing pyrolytic and free radical processes. We note major products of Cl(-) and CO(2)/CO, and also trichloroethylene (TCE) and dichloroethylene (DCE) at ppm concentrations as reported earlier. The formation at very low (ppb) concentration of small halocompounds (CHCl(3), CCl(4)) and also of higher-mass species, such as pentachloropropene, hexachloroethane, is noteworthy. But of particular importance in our work is the discovery of significant quantities of chloroacetate derivatives at ppm concentrations. Although these compounds have been described as by-products with other techniques such as radiolysis or photochemistry, this is the first time that these products have been identified in the sonochemical treatment of PCE; this allows a much more effective account of the mass balance and may explain earlier inconsistencies. This reaction system is now better identified, but a corollary is that, because these haloacetates are themselves species of some toxicity, the use of ultrasound here may not sufficiently diminish wastewater toxicity.


Drying Technology | 2001

MICROWAVE VACUUM DRYING OF POROUS MEDIA: VERIFICATION OF A SEMI-EMPIRICAL FORMULATION OF THE TOTAL ABSORBED POWER

C. Péré; Elisabeth Rodier; Olivier Louisnard

Vacuum drying experiments were performed on a laboratory scale dryer with two porous materials: a packing of initially saturated glass beads and of unsaturated pharmaceutical granules. Several incident powers and two vacuum pressure levels were tested in order to demonstrate different drying mechanisms. The drying kinetics, temperature of the product and the absorbed power are presented and the coupling between the drying rate and the absorbed power is shown. A semi-empirical formulation of the total absorbed power is proposed taking into account the water content, the temperature and the dielectric properties of each phase. This formulation is based on a quasi-static assumption which allows the local electric field inside the material to be expressed with an analytical equation.


Ultrasonics Sonochemistry | 2011

Experimental study of sono-crystallisation of ZnSO4·7H2O, and interpretation by the segregation theory

H. Harzali; Fabien Baillon; Olivier Louisnard; Fabienne Espitalier; Arbi Mgaidi

Power ultrasound is known to enhance crystals nucleation, and nucleation times can be reduced by one up to three orders of magnitude for several organic or inorganic crystals. The precise physics involved in this phenomenon still remains unclear, and various mechanisms involving the action of inertial cavitation bubbles have been proposed. In this paper, two of these mechanisms, pressure and segregation effects, are examined. The first one concerns the variations of supersaturation induced by the high pressures appearing in the neighbourhood of a collapsing bubble, and the second one results from the modification of clusters distribution in the vicinity of bubble. Crystallisation experiments were performed on zinc sulphate heptahydrate ZnSO(4)·7H(2)O, which has been chosen for its pressure-independent solubility, so that pressure variations have no effect on supersaturation. As observed in past studies on other species, induction times were found lower under insonification than under silent conditions at low supersaturations, which casts some doubts on a pure pressure effect. The interfacial energy between the solid and the solution was estimated from induction times obtained in silent conditions, and, using classical nucleation theory, the steady-state distribution of the clusters was calculated. Segregation theory was then applied to calculate the over-concentrations of n-sized clusters at the end of the collapse of a 4 μm bubble driven at 20 kHz by different acoustic pressures. The over-concentration of clusters close to the critical size near a collapsing bubble was found to reach more than one order of magnitude, which may favour the direct attachment process between such clusters, and enhance the global nucleation kinetics.

Collaboration


Dive into the Olivier Louisnard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Sáez

University of Alicante

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge