Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier M. Vandeputte is active.

Publication


Featured researches published by Olivier M. Vandeputte.


Applied and Environmental Microbiology | 2010

Identification of Catechin as One of the Flavonoids from Combretum albiflorum Bark Extract That Reduces the Production of Quorum-Sensing-Controlled Virulence Factors in Pseudomonas aeruginosa PAO1

Olivier M. Vandeputte; Martin Kiendrebeogo; Sanda Rajaonson; Billo Diallo; Adeline Mol; Mondher El Jaziri; Marie Baucher

ABSTRACT Quorum-sensing (QS) regulates the production of key virulence factors in Pseudomonas aeruginosa and other important pathogenic bacteria. In this report, extracts of leaves and bark of Combretum albiflorum (Tul.) Jongkind (Combretaceae) were found to quench the production of QS-dependent factors in P. aeruginosa PAO1. Chromatographic fractionation of the crude active extract generated several active fractions containing flavonoids, as shown by their typical spectral features. Purification and structural characterization of one of the active compounds led to the identification of the flavan-3-ol catechin [(2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol]. The identity of catechin as one of the active molecules was confirmed by comparing the high-pressure liquid chromatography profiles and the mass spectrometry spectra obtained for a catechin standard and for the active C. albiflorum fraction. Moreover, standard catechin had a significant negative effect on pyocyanin and elastase productions and biofilm formation, as well as on the expression of the QS-regulated genes lasB and rhlA and of the key QS regulatory genes lasI, lasR, rhlI, and rhlR. The use of RhlR- and LasR-based biosensors indicated that catechin might interfere with the perception of the QS signal N-butanoyl-l-homoserine lactone by RhlR, thereby leading to a reduction of the production of QS factors. Hence, catechin, along with other flavonoids produced by higher plants, might constitute a first line of defense against pathogenic attacks by affecting QS mechanisms and thereby virulence factor production.


Cytotechnology | 2001

Increased productivity of recombinant tissular plasminogen activator (t-PA) by butyrate and shift of temperature: a cell cycle phases analysis.

V. Hendrick; P. Winnepenninckx; C. Abdelkafi; Olivier M. Vandeputte; Marc Cherlet; T. Marique; G. Renemann; A. Loa; Gerlinde Kretzmer; J. Werenne

Directed control of cell metabolism by a modification of the physicochemical conditions (presence of Na-butyrate and modification of the temperature) was used to modulate the productivity of human recombinant tissular plasminogen activator (t-PA) expressed under control of SV40 promoter in Chinese Hamster Ovary (CHO) cell lines. We showed that both by adding Na-butyrate or lowering temperature from 37 °C to 32 °C there is an increase in the amount of t-PA excreted, while cell growth is significantly reduced. The treatments also increased the intracellular amount of t-PA. We measured the distribution of cell cycle phases by cytometry and used a modification of the equations of Kromenaker and Srienc (1991, 1994 a, b) to analyse the intracellular t-PA production rate in the different cell cycle phases. Intracellular t-PA was shown to accumulate in G1 phase in all conditions (at 37 °C, at 32 °C and in presence of butyrate). Moreover, we have shown that the distribution of the time cells treated by butyrate are maintained in the G1cell cycle phase is significantly increased. t-PA produced in the different cell culture conditions tested was analysed by zymogram and western blotting: neither butyrate, neither the shift of temperature changed significantly the overall quality of the protein. The N-glycan patterns of recombinant human t-PA was also analysed with carbohydrate-specific lectins. Butyrate caused a transitory increase in N-linked complex high-mannose oligosaccharides without any effect on the sialic acid content of t-PA.


Applied and Environmental Microbiology | 2005

Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues

Olivier M. Vandeputte; Sevgi Öden; Adeline Mol; Danny Vereecke; Koen Goethals; Mondher El Jaziri; Els Prinsen

ABSTRACT The role and metabolism of indole-3-acetic acid in gram-negative bacteria is well documented, but little is known about indole-3-acetic acid biosynthesis and regulation in gram-positive bacteria. The phytopathogen Rhodococcus fascians, a gram-positive organism, incites diverse developmental alterations, such as leafy galls, on a wide range of plants. Phenotypic analysis of a leafy gall suggests that auxin may play an important role in the development of the symptoms. We show here for the first time that R. fascians produces and secretes the auxin indole-3-acetic acid. Interestingly, whereas noninfected-tobacco extracts have no effect, indole-3-acetic acid synthesis is highly induced in the presence of infected-tobacco extracts when tryptophan is not limiting. Indole-3-acetic acid production by a plasmid-free strain shows that the biosynthetic genes are located on the bacterial chromosome, although plasmid-encoded genes contribute to the kinetics and regulation of indole-3-acetic acid biosynthesis. The indole-3-acetic acid intermediates present in bacterial cells and secreted into the growth media show that the main biosynthetic route used by R. fascians is the indole-3-pyruvic acid pathway with a possible rate-limiting role for indole-3-ethanol. The relationship between indole-3-acetic acid production and the symptoms induced by R. fascians is discussed.


Microbiology | 2011

The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1

Olivier M. Vandeputte; Martin Kiendrebeogo; Tsiry Rasamiravaka; Caroline Stevigny; Pierre Duez; Sanda Rajaonson; Billo Diallo; Adeline Mol; Marie Baucher; Mondher El Jaziri

Preliminary screening of the Malagasy plant Combretum albiflorum for compounds attenuating the production of quorum sensing (QS)-controlled virulence factors in bacteria led to the identification of active fractions containing flavonoids. In the present study, several flavonoids belonging to the flavone, flavanone, flavonol and chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen Pseudomonas aeruginosa (strain PAO1). Flavanones (i.e. naringenin, eriodictyol and taxifolin) significantly reduced the production of pyocyanin and elastase in P. aeruginosa without affecting bacterial growth. Consistently, naringenin and taxifolin reduced the expression of several QS-controlled genes (i.e. lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1 and rhlA) in P. aeruginosa PAO1. Naringenin also dramatically reduced the production of the acylhomoserine lactones N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL), which is driven by the lasI and rhlI gene products, respectively. In addition, using mutant strains deficient for autoinduction (ΔlasI and ΔrhlI) and LasR- and RhlR-based biosensors, it was shown that QS inhibition by naringenin not only is the consequence of a reduced production of autoinduction compounds but also results from a defect in the proper functioning of the RlhR-C4-HSL complex. Widely distributed in the plant kingdom, flavonoids are known for their numerous and determinant roles in plant physiology, plant development and in the success of plant-rhizobia interactions, but, as shown here, some of them also have a role as inhibitors of the virulence of pathogenic bacteria by interfering with QS mechanisms.


Annual Review of Phytopathology | 2011

A Successful Bacterial Coup d' ´ Etat: How Rhodococcus fascians Redirects Plant Development

Elisabeth Stes; Olivier M. Vandeputte; Mondher El Jaziri; Marcelle Holsters; Danny Vereecke

Rhodococcus fascians is a gram-positive phytopathogen that induces differentiated galls, known as leafy galls, on a wide variety of plants, employing virulence genes located on a linear plasmid. The pathogenic strategy consists of the production of a mixture of six synergistically acting cytokinins that overwhelm the plants homeostatic mechanisms, ensuring the activation of a signaling cascade that targets the plant cell cycle and directs the newly formed cells to differentiate into shoot meristems. The shoots that are formed upon infection remain immature and never convert to source tissues resulting in the establishment of a nutrient sink that is a niche for the epiphytic and endophytic R. fascians subpopulations. Niche formation is accompanied by modifications of the transcriptome, metabolome, physiology, and morphology of both host and pathogen. Here, we review a decade of research and set the outlines of the molecular basis of the leafy gall syndrome.


Molecular Plant Pathology | 2007

The tobacco Ntann12 gene, encoding an annexin, is induced upon Rhodoccocus fascians infection and during leafy gall development

Olivier M. Vandeputte; Yves Oukouomi Lowe; Sylvia Burssens; Damien Van Raemdonck; David Hutin; Danny Geelen; Mondher El Jaziri; Marie Baucher

SUMMARY Annexins are calcium-binding proteins that have been associated in plants with different biological processes such as responses to abiotic stress and early nodulation stages. Until now, the implication of annexins during plant-pathogen interactions has not been reported. Here, a novel plant annexin gene induced in tobacco BY-2 cell suspension cultures infected with the phytopathogenic bacterium Rhodococcus fascians (strain D188) has been identified. Expression of this gene, called Ntann12, is also induced, but to a lower extent, by a strain (D188-5) that is unable to induce leafy gall formation. This gene was also induced in BY-2 cells infected with Pseudomonas syringae but not in cells infected with Agrobacterium tumefaciens or Escherichia coli. Ntann12 expression was also found to be stimulated by abiotic stress, including NaCl and abscissic acid, confirming a putative role in stress signal transduction pathways. In addition, promoter-GUS analyses using homozygous transgenic tobacco seedlings showed that the developmentally controlled expression of Ntann12 is altered upon R. fascians infection. Finally, up-regulation of Ntann12 during leafy gall ontogenesis was confirmed by RT-qPCR. Discussion is focused on the potential role of Ntann12 in biotic and abiotic stress responses and in plant development, both processes that may involve Ca(2+)-dependent signalling.


Journal of Experimental Botany | 2010

Ectopic expression of PtaRHE1, encoding a poplar RING-H2 protein with E3 ligase activity, alters plant development and induces defence-related responses

Johnny Mukoko Bopopi; Olivier M. Vandeputte; Kristiina Himanen; Adeline Mol; Quentin Vaessen; Mondher El Jaziri; Marie Baucher

RING (really interesting new gene)-H2 domain-containing proteins are widely represented in plants and play important roles in the regulation of many developmental processes as well as in plant–environment interactions. In the present report, experiments were performed to unravel the role of the poplar gene PtaRHE1, coding for a RING-H2 protein. In vitro ubiquitination assays indicate a functional E3 ligase activity for PtaRHE1 with the specific E2 ubiquitin-conjugating enzyme UbcH5a. The overexpression of PtaRHE1 in tobacco resulted in a pleiotropic phenotype characterized by a curling of the leaves, the formation of necrotic lesions on leaf blades, growth retardation, and a delay in floral transition. The plant gene expression response to PtaRHE1 overexpression provided evidence for the up-regulation of defence- and/or programmed cell death-related genes. Moreover, genes coding for WRKY transcription factors as well as for mitogen-activated protein kinases, such as wound-induced protein kinase (WIPK), were also found to be induced in the transgenic lines as compared with the wild type. In addition, histochemical β-glucuronidase staining showed that the PtaRHE1 promoter is induced by plant pathogens and by elicitors such as salicylic acid and cellulase. Taken together, these results suggest that the E3 ligase PtaRHE1 plays a role in the ubiquitination-mediated regulation of defence response, possibly by acting upstream of WIPK and/or in the activation of WRKY factors.


Plant Biology | 2013

A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco

Marie Baucher; Jihad Moussawi; Olivier M. Vandeputte; D. Monteyne; Adeline Mol; David Perez-Morga; M. El Jaziri

The MIR396 family, composed of ath-miR396a and ath-miR396b in Arabidopsis, is conserved among plant species and is known to target the Growth-Regulating Factor (GRF) gene family. ath-miR396 overexpressors or grf mutants are characterised by small and narrow leaves and show embryogenic defects such as cotyledon fusion. Heterologous expression of ath-miR396a has been reported in tobacco and resulted in reduction of the expression of three NtGRF genes. In this study, the precursor of the Populus trichocarpa ptc-miR396c, with a mature sequence identical to ath-miR396b, was expressed under control of the CaMV35S promoter in tobacco. Typical phenotypes of GRF down-regulation were observed, including cotyledon fusion and lack of shoot apical meristem (SAM). At later stage of growth, transgenic plants had delayed development and altered specification of organ type during flower development. The third and fourth whorls of floral organs were modified into stigmatoid anthers and fasciated carpels, respectively. Several NtGRF genes containing a miR396 binding site were found to be down-regulated, and the cleavage of their corresponding mRNA at the miR396 binding site was confirmed for two of them using RACE-PCR analysis. The data obtained agree with the functional conservation of the miR396 family in plants and suggest a role for the miR396/GRF network in determination of floral organ specification.


PLOS ONE | 2015

Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume.

Tsiry Rasamiravaka; Olivier M. Vandeputte; Laurent Pottier; Joëlle Huet; Christian Rabemanantsoa; Martin Kiendrebeogo; Abel Andriantsimahavandy; Andry Rasamindrakotroka; Caroline Stevigny; Pierre Duez; Mondher El Jaziri

Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1 biofilm and its maintenance as well as the expression of the las and rhl QS systems. Consequently, the production of QS-controlled virulence factors including, rhamnolipids, pyocyanin, elastase and extracellular polysaccharides as well as twitching and swarming motilities is reduced. Native acylhomoserine lactones (AHLs) production is inhibited by OALC but exogenous supply of AHLs does not restore the production of virulence factors by OALC-treated cultures, indicating that OALC exerts its effect beyond AHLs synthesis in the QS pathways. Further experiments provided a significant inhibition of the global virulence factor activator gacA by OALC. OALC disorganizes established biofilm structure and improves the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Finally, a significant reduction of Caenorhabditis elegans paralysis was recorded when the worms were infected with OALC-pre-treated P. aeruginosa. Taken together, these results show that triterpenoid coumarate esters are suitable chemical backbones to target P. aeruginosa virulence mechanisms.


Molecular Plant-microbe Interactions | 2012

pFiD188, the Linear Virulence Plasmid of Rhodococcus fascians D188

Isolde Francis; Annick De Keyser; Philippe De Backer; Carmen Simón-Mateo; Jutta Kalkus; Ine Pertry; Wilson Ardiles-Diaz; Riet De Rycke; Olivier M. Vandeputte; Mondher El Jaziri; Marcelle Holsters; Danny Vereecke

Rhodococcus fascians is currently the only phytopathogen of which the virulence genes occur on a linear plasmid. To get insight into the origin of this replicon and into the virulence strategy of this broad-spectrum phytopathogen, the sequence of the linear plasmid of strain D188, pFiD188, was determined. Analysis of the 198,917 bp revealed four syntenic regions with linear plasmids of R. erythropolis, R. jostii, and R. opacus, suggesting a common origin of these replicons. Mutational analysis of pFi_086 and pFi_102, similar to cutinases and type IV peptidases, respectively, showed that conserved region R2 was involved in plasmid dispersal and pointed toward a novel function for actinobacterial cutinases in conjugation. Additionally, pFiD188 had three regions that were unique for R. fascians. Functional analysis of the stk and nrp loci of regions U2 and U3, respectively, indicated that their role in symptom development was limited compared with that of the previously identified fas, att, and hyp virulence loci situated in region U1. Thus, pFiD188 is a typical rhodococcal linear plasmid with a composite structure that encodes core functions involved in plasmid maintenance and accessory functions, some possibly acquired through horizontal gene transfer, implicated in virulence and the interaction with the host.

Collaboration


Dive into the Olivier M. Vandeputte's collaboration.

Top Co-Authors

Avatar

Mondher El Jaziri

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Marie Baucher

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Adeline Mol

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johnny Mukoko Bopopi

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanda Rajaonson

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Tsiry Rasamiravaka

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Billo Diallo

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge