Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Manches is active.

Publication


Featured researches published by Olivier Manches.


Journal of Clinical Investigation | 2005

Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor–viral RNA interactions

Anne-Sophie Beignon; Kelli McKenna; Mojca Skoberne; Olivier Manches; Ida Dasilva; Daniel G. Kavanagh; Marie Larsson; Robert J. Gorelick; Jeffrey D. Lifson; Nina Bhardwaj

HIV-1 directly activates human plasmacytoid DCs (pDCs) by upregulating the expression of costimulatory and MHC molecules and maturation markers, increasing T cell stimulatory activity, and inducing the production of type I interferons and TNF-alpha. A consequence of this activation is the bystander maturation of myeloid DCs and overall enhancement of antigen-presenting function. However, little is known about the mechanism(s) of pDC activation by HIV-1. Here we demonstrate by in vitro studies that IFN-alpha production by pDC in response to HIV-1 requires at least 2 interactions between the cell and virus. Initially, envelope-CD4 interactions mediate endocytosis of HIV-1, as demonstrated through the use of inhibitors of binding, fusion, endocytosis, and endosomal acidification. Subsequently, endosomally delivered viral nucleic acids, particularly RNA, stimulate pDCs through TLRs, as activation is reproduced with purified genomic RNA but not viral RNA packaging-deficient HIV-1 and blocked with different inhibitory TLR ligands. Finally, by using genetic complementation, we show that TLR7 is the likely primary target. Viral RNA rather than DNA in early retrotranscripts appears to be the active factor in HIV-1 that induces IFN-alpha secretion by pDCs. Since the decline in pDCs in chronic HIV-1 infection is associated with high viral loads and opportunistic infections, exploiting this natural adjuvant activity of HIV-1 RNA might be useful in the development of vaccines for the prevention of AIDS.


Journal of Immunology | 2006

Virus or TLR Agonists Induce TRAIL-Mediated Cytotoxic Activity of Plasmacytoid Dendritic Cells

Laurence Chaperot; Ariane Blum; Olivier Manches; Gabrielle Lui; Juliette Angel; Jean-Paul Molens; Joel Plumas

Among dendritic cells, plasmacytoid dendritic cells (PDC) represent a functionally distinct lineage. Regarding innate immunity, PDC secrete large amounts of type I IFN upon viral exposure or stimulation by microbial products such as unmethylated CpG-motif containing oligo-DNA due to their selective expression of TLR7 and TLR9. We asked whether they could acquire cytotoxic functions during the early phases of infection or after activation with TLR7 or TLR9 agonists. In the present study, we describe a human PDC cell line called GEN2.2, derived from leukemic PDC, that shares most of the phenotypic and functional features of normal PDC. We show that after contact with the influenza virus, GEN2.2, as well as normal PDC, acquires TRAIL and killer activity against TRAIL-sensitive target cells. Moreover, we show that activation of GEN2.2 cells by CpG-motif containing oligo-DNA or R848 also induces TRAIL and endows them with the ability to kill melanoma cells. Therefore, PDC may represent a major component of innate immunity that could participate to the clearance of infected cells and tumor cells. This phenomenon could be relevant for the efficacy of TLR7 or TLR9 agonists in the therapy of infectious disease and cancer.


Journal of Immunology | 2008

Immunization of Malignant Melanoma Patients with Full-Length NY-ESO-1 Protein Using TLR7 Agonist Imiquimod as Vaccine Adjuvant

Sylvia Adams; David O'Neill; Daisuke Nonaka; Elizabeth Hardin; Luis Chiriboga; Kimberly Siu; Crystal M. Cruz; Angelica Angiulli; Francesca Angiulli; Erika Ritter; Rose Marie Holman; Richard L. Shapiro; Russell S. Berman; Natalie Berner; Yongzhao Shao; Olivier Manches; Linda Pan; Ralph Venhaus; Eric W. Hoffman; Achim A. Jungbluth; Sacha Gnjatic; Lloyd Old; Anna C. Pavlick; Nina Bhardwaj

T cell-mediated immunity to microbes and to cancer can be enhanced by the activation of dendritic cells (DCs) via TLRs. In this study, we evaluated the safety and feasibility of topical imiquimod, a TLR7 agonist, in a series of vaccinations against the cancer/testis Ag NY-ESO-1 in patients with malignant melanoma. Recombinant, full-length NY-ESO-1 protein was administered intradermally into imiquimod preconditioned sites followed by additional topical applications of imiquimod. The regimen was very well tolerated with only mild and transient local reactions and constitutional symptoms. Secondarily, we examined the systemic immune response induced by the imiquimod/NY-ESO-1 combination, and show that it elicited both humoral and cellular responses in a significant fraction of patients. Skin biopsies were assessed for imiquimod’s in situ immunomodulatory effects. Compared with untreated skin, topical imiquimod induced dermal mononuclear cell infiltrates in all patients composed primarily of T cells, monocytes, macrophages, myeloid DCs, NK cells, and, to a lesser extent, plasmacytoid DCs. DC activation was evident. This study demonstrates the feasibility and excellent safety profile of a topically applied TLR7 agonist used as a vaccine adjuvant in cancer patients. Imiquimod’s adjuvant effects require further evaluation and likely need optimization of parameters such as formulation, dose, and timing relative to Ag exposure for maximal immunogenicity.


Journal of Clinical Investigation | 2008

HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism.

Olivier Manches; David H. Munn; Anahita Fallahi; Jeffrey D. Lifson; Laurence Chaperot; Joel Plumas; Nina Bhardwaj

Plasmacytoid DCs (pDCs) have been implicated as crucial cells in antiviral immune responses. On recognizing HIV, they become activated, secreting large amounts of IFN-alpha and inflammatory cytokines, thereby potentiating innate and adaptive antiviral immune responses. Here, we have shown that HIV-stimulated human pDCs can also induce the differentiation of naive CD4+ T cells into Tregs with suppressive function. This differentiation was independent of pDC production of IFN-alpha and primarily dependent on pDC expression of indoleamine 2,3-dioxygenase, which was induced through the TLR/MyD88 pathway, following binding of HIV to CD4 and triggering of TLR7 by HIV genomic RNA. Functionally, the Tregs induced by pDCs were shown to inhibit the maturation of bystander conventional DCs. This study therefore reveals what we believe to be a novel mechanism by which pDC may regulate and potentially limit anti-HIV immune responses.


Journal of Clinical Investigation | 2011

Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-α–producing and partially matured phenotype

Meagan O'Brien; Olivier Manches; Rachel Lubong Sabado; Sonia Jimenez Baranda; Yaming Wang; I. Marie; Linda Rolnitzky; Martin Markowitz; David M. Margolis; David E. Levy; Nina Bhardwaj

Plasmacytoid DCs (pDCs) are innate immune cells that are specialized to produce IFN-α and to activate adaptive immune responses. Although IFN-α inhibits HIV-1 replication in vitro, the production of IFN-α by HIV-activated pDCs in vivo may contribute more to HIV pathogenesis than to protection. We have now shown that HIV-stimulated human pDCs allow for persistent IFN-α production upon repeated stimulation, express low levels of maturation molecules, and stimulate weak T cell responses. Persistent IFN-α production by HIV-stimulated pDCs correlated with increased levels of IRF7 and was dependent upon the autocrine IFN-α/β receptor feedback loop. Because it has been shown that early endosomal trafficking of TLR9 agonists causes strong activation of the IFN-α pathway but weak activation of the NF-κB pathway, we sought to investigate whether early endosomal trafficking of HIV, a TLR7 agonist, leads to the IFN-α-producing phenotype we observed. We demonstrated that HIV preferentially traffics to the early endosome in human pDCs and therefore skews pDCs toward a partially matured, persistently IFN-α-secreting phenotype.


Cancer Research | 2011

TLR4 Engagement during TLR3-Induced Proinflammatory Signaling in Dendritic Cells Promotes IL-10–Mediated Suppression of Antitumor Immunity

Dusan Bogunovic; Olivier Manches; Emmanuelle Godefroy; Alice Yewdall; Anne Gallois; Andres M. Salazar; I. Marie; David E. Levy; Nina Bhardwaj

Toll-like receptor (TLR) agonists are promising adjuvants for immune therapy of cancer, but their potential efficacy as single or combinatorial agents has yet to be fully evaluated. Here, we report that among all TLR agonists tested, dendritic cells (DC) stimulated with the TLR3 agonist polyI:C displayed the strongest activity in stimulating proinflammatory responses and the production of melanoma antigen-specific CD8(+) T cells. Simultaneous treatment with TLR7/8 agonists further improved these responses, but the inclusion of bacterial lipopolysaccharide (LPS), a TLR4 agonist, suppressed proinflammatory cytokine production. This inhibition was contingent upon rapid induction of the suppressive cytokine interleukin (IL)-10 by LPS, leading to dysregulated immune responses and it could be reversed by signal transducers and activators of transcription 3 knockdown, p38 blockade or antibodies to IL-10 and its receptor. Our findings show how certain TLR agonist combinations can enhance or limit DC responses associated with antitumor immunity, through their relative ability to induce IL-10 pathways that are immune suppressive.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Activation of the noncanonical NF-κB pathway by HIV controls a dendritic cell immunoregulatory phenotype

Olivier Manches; Melissa Victoria Fernandez; Joel Plumas; Laurence Chaperot; Nina Bhardwaj

HIV modulates plasmacytoid dendritic cell (pDC) activation via Toll-like receptor 7, inducing type I IFN and inflammatory cytokines. Simultaneously, pDCs up-regulate the expression of indoleamine 2,3 dioxygenase (IDO), which is essential for the induction of regulatory T cells (Tregs), which function to down-modulate immune activation. Here we demonstrate the crucial importance of the noncanonical NF-κB pathway in the establishment of this immunoregulatory phenotype in pDCs. In response to HIV, the noncanonical NF-κB pathway directly induces IDO and involves the recruitment of TNF receptor-associated factor-3 to the Toll-like receptor/MyD88 complex, NF-κB–inducing kinase-dependent IκB kinase-α activation, and p52/RelB nuclear translocation. We also show that pDC-induced Tregs can inhibit conventional DC (cDC) maturation partially through cytotoxic T-lymphocyte antigen (CTLA)-4 engagement. Furthermore, CTLA-4 induces IDO in cDCs in a NF-κB–inducing kinase-dependent way. These CTLA-4–conditioned cDCs can in turn induce Treg differentiation in an IDO-dependent manner. Thus, the noncanonical NF-κB pathway is integral in controlling immunoregulatory phenotypes of both pDCs and cDCs.


Trends in Immunology | 2014

Dendritic cells in progression and pathology of HIV infection

Olivier Manches; Davor Frleta; Nina Bhardwaj

Although the major targets of HIV infection are CD4⁺ T cells, dendritic cells (DCs) represent a crucial subset in HIV infection because they influence viral transmission and target cell infection and presentation of HIV antigens. DCs are potent antigen-presenting cells that can modulate antiviral immune responses. Through secretion of inflammatory cytokines and interferons (IFNs), DCs also alter T cell proliferation and differentiation, participating in the immune dysregulation characteristic of chronic HIV infection. Their wide distribution in close proximity with the mucosal epithelia makes them one of the first cell types to encounter HIV during sexual transmission. We discuss here the multiple roles that DCs play at different stages of HIV infection, emphasizing their relevance to HIV pathology and progression.


Advances in Experimental Medicine and Biology | 2013

Plasmacytoid Dendritic Cells in HIV Infection

Meagan O’Brien; Olivier Manches; Nina Bhardwaj

Plasmacytoid dendritic cells (pDCs) are innate immune cells that are specialized to produce interferon-alpha (IFNα) and participate in activating adaptive immune responses. Although IFNα inhibits HIV-1 (HIV) replication in vitro, pDCs may act as inflammatory and immunosuppressive dendritic cells (DCs) rather than classical antigen-presenting cells during chronic HIV infection in vivo, contributing more to HIV pathogenesis than to protection. Improved understanding of HIV-pDC interactions may yield potential new avenues of discovery to prevent HIV transmission, to blunt chronic immune activation and exhaustion, and to enhance beneficial adaptive immune responses. In this chapter we discuss pDC biology, including pDC development from progenitors, trafficking and localization of pDCs in the body, and signaling pathways involved in pDC activation. We focus on the role of pDCs in HIV transmission, chronic disease progression and immune activation, and immunosuppression through regulatory T cell development. Lastly, we discuss potential future directions for the field which are needed to strengthen our current understanding of the role of pDCs in HIV transmission and pathogenesis.


Journal of Virology | 2011

Oligonucleotide Motifs That Disappear during the Evolution of Influenza Virus in Humans Increase Alpha Interferon Secretion by Plasmacytoid Dendritic Cells

Sonia Jimenez-Baranda; Benjamin D. Greenbaum; Olivier Manches; Jesse Handler; Raul Rabadan; Arnold J. Levine; Nina Bhardwaj

ABSTRACT CpG motifs in an A/U context have been preferentially eliminated from classical H1N1 influenza virus genomes during virus evolution in humans. The hypothesis of the current work is that CpG motifs in a uracil context represent sequence patterns with the capacity to induce an immune response, and the avoidance of this immunostimulatory signal is the reason for the observed preferential decline. To analyze the immunogenicity of these domains, we used plasmacytoid dendritic cells (pDCs). pDCs express pattern recognition receptors, including Toll-like receptor 7 (TLR7), which recognizes guanosine- and uridine-rich viral single-stranded RNA (ssRNA), including influenza virus ssRNA. The signaling through TLR7 results in the induction of inflammatory cytokines and type I interferon (IFN-I), an essential process for the induction of specific adaptive immune responses and for mounting a robust antiviral response mediated by IFN-α. Secretion of IFN-α is also linked to the activation of other immune cells, potentially amplifying the effect of an initial IFN-α secretion. We therefore also examined the role of IFN-α-driven activation of NK cells as another source of selective pressure on the viral genome. We found direct evidence that CpG RNA motifs in a U-rich context control pDC activation and IFN-α-driven activation of NK cells, likely through TLR7. These data provide a potential explanation for the loss of CpG motifs from avian influenza viruses as they adapt to mammalian hosts. The selective decrease of CpG motifs surrounded by U/A may be a viral strategy to avoid immune recognition, a strategy likely shared by highly expressed human immune genes.

Collaboration


Dive into the Olivier Manches's collaboration.

Top Co-Authors

Avatar

Nina Bhardwaj

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Laurence Chaperot

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Gallois

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Paul Molens

Gulf Coast Regional Blood Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dusan Bogunovic

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge