Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Mathieu is active.

Publication


Featured researches published by Olivier Mathieu.


Cell | 2007

Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG Methylation

Olivier Mathieu; Jon Reinders; Marian Čaikovski; Chotika Smathajitt; Jerzy Paszkowski

Maintenance of CG methylation ((m)CG) patterns is essential for chromatin-mediated epigenetic regulation of transcription in plants and mammals. However, functional links between (m)CG and other epigenetic mechanisms in vivo remain obscure. Using successive generations of an Arabidopsis thaliana mutant deficient in maintaining (m)CG, we find that (m)CG loss triggers genome-wide activation of alternative epigenetic mechanisms. However, these mechanisms, which involve RNA-directed DNA methylation, inhibiting expression of DNA demethylases, and retargeting of histone H3K9 methylation, act in a stochastic and uncoordinated fashion. As a result, new and aberrant epigenetic patterns are progressively formed over several plant generations in the absence of (m)CG. Interestingly, the unconventional redistribution of epigenetic marks is necessary to rescue the loss of (m)CG, since mutant plants impaired in rescue activities are severely dwarfed and sterile. Our results provide evidence that (m)CG is a central coordinator of epigenetic memory that secures stable transgenerational inheritance in plants.


Nature | 2009

Bursts of retrotransposition reproduced in Arabidopsis

Sayuri Tsukahara; Akie Kobayashi; Akira Kawabe; Olivier Mathieu; Asuka Miura; Tetsuji Kakutani

Retrotransposons, which proliferate by reverse transcription of RNA intermediates, comprise a major portion of plant genomes. Plants often change the genome size and organization during evolution by rapid proliferation and deletion of long terminal repeat (LTR) retrotransposons. Precise transposon sequences throughout the Arabidopsis thaliana genome and the trans-acting mutations affecting epigenetic states make it an ideal model organism with which to study transposon dynamics. Here we report the mobilization of various families of endogenous A. thaliana LTR retrotransposons identified through genetic and genomic approaches with high-resolution genomic tiling arrays and mutants in the chromatin-remodelling gene DDM1 (DECREASE IN DNA METHYLATIONu20091). Using multiple lines of self-pollinated ddm1 mutant, we detected an increase in copy number, and verified this for various retrotransposons in a gypsy family (ATGP3) and copia families (ATCOPIA13, ATCOPIA21, ATCOPIA93), and also for a DNA transposon of a Mutator family, VANDAL21. A burst of retrotransposition occurred stochastically and independently for each element, suggesting an additional autocatalytic process. Furthermore, comparison of the identified LTR retrotransposons in related Arabidopsis species revealed that a lineage-specific burst of retrotransposition of these elements did indeed occur in natural Arabidopsis populations. The recent burst of retrotransposition in natural population is targeted to centromeric repeats, which is presumably less harmful than insertion into genes. The ddm1-induced retrotransposon proliferations and genome rearrangements mimic the transposon-mediated genome dynamics during evolution and provide experimental systems with which to investigate the controlling molecular factors directly.


Nature | 2009

Selective epigenetic control of retrotransposition in Arabidopsis

Marie Mirouze; Jon Reinders; Etienne Bucher; Taisuke Nishimura; Korbinian Schneeberger; Stephan Ossowski; Jun Cao; Detlef Weigel; Jerzy Paszkowski; Olivier Mathieu

Retrotransposons are mobile genetic elements that populate chromosomes, where the host largely controls their activities. In plants and mammals, retrotransposons are transcriptionally silenced by DNA methylation, which in Arabidopsis is propagated at CG dinucleotides by METHYLTRANSFERASE 1 (MET1). In met1 mutants, however, mobilization of retrotransposons is not observed, despite their transcriptional activation. A post-transcriptional mechanism therefore seems to be preventing retrotransposition. Here we show that a copia-type retrotransposon (Évadé, French for ‘fugitive’) evaded suppression of its movement during inbreeding of hybrid epigenomes consisting of met1- and wild-type-derived chromosomes. Évadé (EVD) reinsertions caused a series of developmental mutations that allowed its identification. Genetic testing of host control of the EVD life cycle showed that transcriptional suppression occurred by CG methylation supported by RNA-directed DNA methylation. On transcriptional reactivation, subsequent steps of the EVD cycle were inhibited by plant-specific RNA polymerase IV/V and the histone methyltransferase KRYPTONITE (KYP). Moreover, genome resequencing demonstrated retrotransposition of EVD but no other potentially active retroelements when this combination of epigenetic mechanisms was compromised. Our results demonstrate that epigenetic control of retrotransposons extends beyond transcriptional suppression and can be individualized for particular elements.


The EMBO Journal | 2005

Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis.

Olivier Mathieu; Aline V. Probst; Jerzy Paszkowski

Transcriptional activity and structure of chromatin are correlated with patterns of covalent DNA and histone modification. Previous studies have revealed that high levels of histone H3 dimethylation at lysine 9 (H3K9me2), characteristic of transcriptionally silent heterochromatin in Arabidopsis, require hypermethylation of DNA at CpG sites. Here, we report that CpG hypermethylation characteristic of heterochromatin specifically prevented H3K27 trimethylation (H3K27me3). H3K27 mono‐ and dimethylation mark silent heterochromatin independently of DNA methylation. Upon loss of CpG methylation, there was target‐specific enrichment of H3K27me3 in heterochromatin that correlated with transcriptional reactivation. Moreover, using the kyp mutant affected in H3K9me2, we showed that changes in H3K27me3 occurred independently of the levels of H3K9me2. Therefore, CpG methylation provides distinct and direct information for a specific subset of histone methylation marks. The observed independence of the regulation of H3K9 and H3K27 methylation by CpG methylation refines the recently proposed combinatorial histone code involving these two marks.


PLOS Genetics | 2010

Stress-Induced Activation of Heterochromatic Transcription

Mireille Tittel-Elmer; Etienne Bucher; Larissa Broger; Olivier Mathieu; Jerzy Paszkowski; Isabelle Vaillant

Constitutive heterochromatin comprising the centromeric and telomeric parts of chromosomes includes DNA marked by high levels of methylation associated with histones modified by repressive marks. These epigenetic modifications silence transcription and ensure stable inheritance of this inert state. Although environmental cues can alter epigenetic marks and lead to modulation of the transcription of genes located in euchromatic parts of the chromosomes, there is no evidence that external stimuli can globally destabilize silencing of constitutive heterochromatin. We have found that heterochromatin-associated silencing in Arabidopsis plants subjected to a particular temperature regime is released in a genome-wide manner. This occurs without alteration of repressive epigenetic modifications and does not involve common epigenetic mechanisms. Such induced release of silencing is mostly transient, and rapid restoration of the silent state occurs without the involvement of factors known to be required for silencing initiation. Thus, our results reveal new regulatory aspects of transcriptional repression in constitutive heterochromatin and open up possibilities to identify the molecular mechanisms involved.


Journal of Cell Science | 2004

RNA-directed DNA methylation.

Olivier Mathieu; Judith Bender

Double-stranded RNAs (dsRNAs) and their `diced small RNA products can guide key developmental and defense mechanisms in eukaryotes. Some RNA-directed mechanisms act at a post-transcriptional level to degrade target messenger RNAs. However, dsRNA-derived species can also direct changes in the chromatin structure of DNA regions with which they share sequence identity. For example, plants use such RNA species to lay down cytosine methylation imprints on identical DNA sequences, providing a fundamental mark for the formation of transcriptionally silent heterochromatin. Thus, RNA can feed backwards to modulate the accessibility of information stored in the DNA of cognate genes. RNA triggers for DNA methylation can come from different sources, including invasive viral, transgene or transposon sequences, and in some cases are derived from single-stranded RNA precursors by RNA-dependent RNA polymerases. The mechanism by which RNA signals are translated into DNA methylation imprints is currently unknown, but two plant-specific types of cytosine methyltransferase have been implicated in this process. RNA can also direct heterochromatin formation in fission yeast and Drosophila, but in these organisms the process occurs in the absence of DNA methylation.


The Plant Cell | 2003

Changes in 5S rDNA Chromatin Organization and Transcription during Heterochromatin Establishment in Arabidopsis

Olivier Mathieu; Zuzana Jasencakova; Isabelle Vaillant; Anne-Valérie Gendrel; Vincent Colot; Ingo Schubert; Sylvette Tourmente

In the Arabidopsis accession Columbia, 5S rDNA is located in the pericentromeric heterochromatin of chromosomes 3, 4, and 5. Both a major and some minor 5S rRNA species are expressed from chromosomes 4 and 5, whereas the genes on chromosome 3 are not transcribed. Here, we show that 5S rDNA methylation is reduced in 2-day-old seedlings versus 4-day-old or older aerial plant tissues, and the minor 5S rRNA species are expressed most abundantly at this stage. Similarly, when 5S rDNA is demethylated by 5-azacytidine treatment or via the decrease in DNA methylation1 (ddm1) mutation, the expression of minor 5S rRNA species is increased. We also show that in leaf nuclei of mature wild-type plants, the transcribed fraction of 5S rDNA forms loops that emanate from chromocenters. These loops, which are enlarged in nuclei of mature ddm1 plants, are enriched for histone H3 acetylated at Lys-9 and methylated at Lys-4 compared with the heterochromatic chromocenters. Up to 4 days after germination, heterochromatin is not fully developed: the 5S rDNA resides in prechromocenters, does not form conspicuous loops, and shows the lowest transcription level. Our results indicate that the expression and chromatin organization of 5S rRNA genes change during heterochromatin establishment.


EMBO Reports | 2006

MOM1 mediates DNA-methylation-independent silencing of repetitive sequences in Arabidopsis

Isabelle Vaillant; Ingo Schubert; Sylvette Tourmente; Olivier Mathieu

The heterochromatic regions around centromeres of animal and plant chromosomes are composed of tandem repetitive sequences, interspersed with transposons and transposon derivatives. These sequences are largely transcriptionally silent and highly methylated, and are associated with specifically modified histones. Although embedded in heterochromatin, Arabidopsis 5S ribosomal RNA genes are among the most highly transcribed genes. However, some 5S genes are silenced, and we show here that this silencing can be suppressed by a reduction in CG methylation. Importantly, we show that mutation of MORPHEUS’ MOLECULE 1 (MOM1) releases 5S repeat silencing independently of chromatin properties, as illustrated by the absence of detectable alteration of DNA and histone H3 methylation patterns. MOM1 also prevents transcription of 180‐bp satellite repeats and 106B dispersed repeats but not of transposons. Our results provide evidence that transcription of densely methylated and highly repetitive heterochromatic sequences is controlled by two distinct epigenetic silencing pathways, one dependent on and the other independent of DNA methylation.


Biochimica et Biophysica Acta | 2011

A "mille-feuille" of silencing: epigenetic control of transposable elements.

Mélanie Rigal; Olivier Mathieu

Despite their abundance in the genome, transposable elements (TEs) and their derivatives are major targets of epigenetic silencing mechanisms, which restrain TE mobility at different stages of the life cycle. DNA methylation, post-translational modification of histone tails and small RNA-based pathways contribute to maintain TE silencing; however, some of these epigenetic marks are tightly interwoven and this complicates the delineation of the exact contribution of each in TE silencing. Recent studies have confirmed that host genomes have evolved versatility in the use of these mechanisms to individualize silencing of particular TEs. These studies also revealed that silencing of TEs is much more dynamic than had been previously thought and can be reversed on the genomic scale in particular cell types or under special environmental conditions. This article is part of a Special Issue entitled Epigenetic control of cellular and developmental processes in plants.


EMBO Reports | 2006

Epigenetic regulation of transcription in intermediate heterochromatin

Yoshiki Habu; Olivier Mathieu; Muhammad Tariq; Aline V. Probst; Chotika Smathajitt; Tong Zhu; Jerzy Paszkowski

Constitutive heterochromatin is a compact, transcriptionally inert structure formed in gene‐poor and repeat‐ and transposon‐rich regions. In Arabidopsis, constitutive heterochromatin is characterized by hypermethylated DNA and histone H3 dimethylated at lysine (K) 9 (H3K9me2) together with depletion of histone H3 dimethylated at lysine 4 (H3K4me2). Here, we describe loci with intermediate properties of heterochromatin in which transcription downregulation is inherited in a manner similar to constitutive heterochromatin, although the loci are associated with opposing histone marks—H3K4me2 and H3K9me2. In the ddm1 (decrease in DNA methylation 1) mutants, their transcriptional activation is accompanied by the expected shift in the H3 modifications—depletion of H3K9me2 and enrichment in H3K4me2. In mom1 (Morpheus molecule 1) mutants, however, a marked increase in transcription is not accompanied by detectable changes in the levels of H3K4me2 and H3K9me2. Therefore, transcriptional regulation in the intermediate heterochromatin involves two distinct epigenetic mechanisms. Interestingly, silent transgenic inserts seem to acquire properties characteristic of the intermediate heterochromatin.

Collaboration


Dive into the Olivier Mathieu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Vaillant

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Georges Picard

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Etienne Bucher

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

C. Cloix

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar

C. Cuvillier

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar

S. Tutois

Blaise Pascal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge