Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Mousis is active.

Publication


Featured researches published by Olivier Mousis.


Science | 2015

67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio

Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; Jean-Jacques Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; J. De Keyser; P. Eberhardt; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Annette Jäckel; Ernest Kopp; A. Korth; L. Leroy; U. Mall; Bernard Marty; Olivier Mousis; Eddy Neefs; Tobias Owen; H. Rème; Martin Rubin; Thierry Sémon; Chia-Yu Tzou

The provenance of water and organic compounds on Earth and other terrestrial planets has been discussed for a long time without reaching a consensus. One of the best means to distinguish between different scenarios is by determining the deuterium-to-hydrogen (D/H) ratios in the reservoirs for comets and Earth’s oceans. Here, we report the direct in situ measurement of the D/H ratio in the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA mass spectrometer aboard the European Space Agency’s Rosetta spacecraft, which is found to be (5.3 ± 0.7) × 10−4—that is, approximately three times the terrestrial value. Previous cometary measurements and our new finding suggest a wide range of D/H ratios in the water within Jupiter family objects and preclude the idea that this reservoir is solely composed of Earth ocean–like water.


Science | 2015

Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko

Myrtha Hässig; Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; J. J. Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; J. De Keyser; P. Eberhardt; Björn Fiethe; S. A. Fuselier; M. Galand; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Annette Jäckel; H. U. Keller; Ernest Kopp; A. Korth; E. Kührt; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Eddy Neefs; Tobias Owen; H. Rème

Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.


Science | 2015

Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature

Martin Rubin; Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; Jean-Jacques Berthelier; André Bieler; P. Bochsler; C. Briois; Ursina Maria Calmonte; Michael R. Combi; J. De Keyser; Frederik Dhooghe; P. Eberhardt; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Annette Jäckel; Ernest Kopp; A. Korth; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Tobias Owen; H. Rème; Thierry Sémon; Chia-Yu Tzou

Making comets in the cold The speciation of nitrogen compounds in comets can tell us about their history. Comets are some of the most ancient bodies in the solar system and should contain the nitrogen compounds that were abundant when they formed. Using the ROSINA mass spectrometer aboard the Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko, Rubin et al. found molecular nitrogen at levels that are depleted compared to those in the primordial solar system. Depletion of such a magnitude suggests that the comet formed either from the low-temperature agglomeration of pristine amorphous water ice grains or from clathrates. Science, this issue p. 232 Direct measurements of N2 by instruments aboard the Rosetta spacecraft provide clues about the comet’s long history. Molecular nitrogen (N2) is thought to have been the most abundant form of nitrogen in the protosolar nebula. It is the main N-bearing molecule in the atmospheres of Pluto and Triton and probably the main nitrogen reservoir from which the giant planets formed. Yet in comets, often considered the most primitive bodies in the solar system, N2 has not been detected. Here we report the direct in situ measurement of N2 in the Jupiter family comet 67P/Churyumov-Gerasimenko, made by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer aboard the Rosetta spacecraft. A N2/CO ratio of (5.70±0.66)×10−3 (2σ standard deviation of the sampled mean) corresponds to depletion by a factor of ~25.4 ± 8.9 as compared to the protosolar value. This depletion suggests that cometary grains formed at low-temperature conditions below ~30 kelvin.


Nature | 2015

Abundant molecular oxygen in the coma of comet 67P/Churyumov-Gerasimenko

André Bieler; Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; Jean-Jacques Berthelier; P. Bochsler; C. Briois; Ursina Maria Calmonte; Michael R. Combi; J. De Keyser; E. F. van Dishoeck; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Annette Jäckel; Ernest Kopp; A. Korth; L. Le Roy; U. Mall; Romain Maggiolo; Bernard Marty; Olivier Mousis; Tobias Owen; H. Rème; Martin Rubin; Thierry Sémon; Chia-Yu Tzou

The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typically comprising as much as 95 per cent of the total gas density. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov–Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.80 ± 0.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet’s formation, which is unexpected given the low upper limits from remote sensing observations. Current Solar System formation models do not predict conditions that would allow this to occur.


The Astrophysical Journal | 2011

METHANE IN THE ATMOSPHERE OF THE TRANSITING HOT NEPTUNE GJ436B

J. P. Beaulieu; Giovanna Tinetti; David M. Kipping; Ignasi Ribas; Robert J. Barber; James Cho; I. Polichtchouk; Jonathan Tennyson; Sergei N. Yurchenko; Caitlin Ann Griffith; V. Batista; Ingo P. Waldmann; Steve Miller; Sean J. Carey; Olivier Mousis; S. J. Fossey; A. D. Aylward

We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5, and 8 μm obtained with the Infrared Array Camera on the Spitzer Space Telescope. After correcting for systematic effects, we fitted the light curves using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, Hubble Space Telescope, and ground-based V, I, H, and Ks published observations, the range 0.5–10 μm can be covered. Due to the low level of activity of GJ436, the effect of starspots on the combination of transits at different epochs is negligible at the accuracy of the data set. Representative climate models were calculated by using a three-dimensional, pseudospectral general circulation model with idealized thermal forcing. Simulated transit spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such a planetary atmosphere. A new, ab-initio-calculated, line list for hot ammonia has been used for the first time. The photometric data observed at multiple wavelengths can be interpreted with methane being the dominant absorption after molecular hydrogen, possibly with minor contributions from ammonia, water, and other molecules. No clear evidence of carbon monoxide and carbon dioxide is found from transit photometry. We discuss this result in the light of a recent paper where photochemical disequilibrium is hypothesized to interpret secondary transit photometric data. We show that the emission photometric data are not incompatible with the presence of abundant methane, but further spectroscopic data are desirable to confirm this scenario.


Science Advances | 2016

Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko

Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; J. J. Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; H. Cottin; Johan De Keyser; Frederik Dhooghe; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Haessig; Annette Jäckel; Ernest Kopp; A. Korth; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Tobias Owen; H. Rème; Martin Rubin; Thierry Sémon; Chia Yu Tzou

The detection of glycine and phosphorus in the coma of 67P shows that comets contain all ingredients to help spark life on Earth. The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust mission after the flyby at comet Wild 2, the simplest form of amino acids, glycine, has been found together with precursor molecules methylamine and ethylamine. Because of contamination issues of the samples, a cometary origin was deduced from the 13C isotopic signature. We report the presence of volatile glycine accompanied by methylamine and ethylamine in the coma of 67P/Churyumov-Gerasimenko measured by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer, confirming the Stardust results. Together with the detection of phosphorus and a multitude of organic molecules, this result demonstrates that comets could have played a crucial role in the emergence of life on Earth.


The Astrophysical Journal | 2008

SEQUESTRATION OF ETHANE IN THE CRYOVOLCANIC SUBSURFACE OF TITAN

Olivier Mousis; Bernard Schmitt

Saturns largest satellite, Titan, has a thick atmosphere dominated by nitrogen and methane. The dense orange-brown smog hiding the satellites surface is produced by photochemical reactions of methane, nitrogen, and their dissociation products with solar ultraviolet, which lead primarily to the formation of ethane and heavier hydrocarbons. In the years prior to the exploration of Titans surface by the Cassini-Huygens spacecraft, the production and condensation of ethane was expected to have formed a satellite-wide ocean 1 km in depth, assuming that it was generated over the solar systems lifetime. However, Cassini-Huygens observations failed to find any evidence of such an ocean. Here we describe the main cause of the ethane deficiency on Titan: cryovolcanic lavas regularly cover its surface, leading to the percolation of the liquid hydrocarbons through this porous material and its accumulation in subsurface layers built up during successive methane outgassing events. The liquid stored in the pores may, combined with the ice layers, form a stable ethane-rich clathrate reservoir, potentially isolated from the surface. Even with a low open porosity of 10% for the subsurface layers, a cryovolcanic icy crust less than 2300 m thick is required to bury all the liquid hydrocarbons generated over the solar systems lifetime.


The Astrophysical Journal | 2013

TOWARD A UNIQUE NITROGEN ISOTOPIC RATIO IN COMETARY ICES

P. Rousselot; O. Pirali; Emmanuel Jehin; Michel Vervloet; Damien Hutsemekers; Jean Manfroid; Daniel Cordier; Marie-Aline Martin-Drumel; Sébastien Gruet; Claude Arpigny; Alice Decock; Olivier Mousis

Determination of the nitrogen isotopic ratios in different bodies of the solar system provides important information regarding the solar systems origin. We unambiguously identified emission lines in comets due to the 15NH2 radical produced by the photodissociation of 15NH3. Analysis of our data has permitted us to measure the 14N/15N isotopic ratio in comets for a molecule carrying the amine (-NH) functional group. This ratio, within the error, appears similar to that measured in comets in the HCN molecule and the CN radical, and lower than the protosolar value, suggesting that N2 and NH3 result from the separation of nitrogen into two distinct reservoirs in the solar nebula. This ratio also appears similar to that measured in Titans atmospheric N2, supporting the hypothesis that, if the latter is representative of its primordial value in NH3, these bodies were assembled from building blocks sharing a common formation location.


The Astronomical Journal | 2006

Exploration of the Kuiper Belt by High-Precision Photometric Stellar Occultations: First Results

Francoise Roques; A. Doressoundiram; Vikram S. Dhillon; T. R. Marsh; S. J. Bickerton; J. J. Kavelaars; M. Moncuquet; M. Auvergne; Irina N. Belskaya; M. Chevreton; F. Colas; A. Fernandez; A. Fitzsimmons; J. Lecacheux; Olivier Mousis; S. Pau; Nuno Peixinho; G. P. Tozzi

We report here the first detection of hectometer-size objects by the method of serendipitous stellar occultation. This method consists of recording the diffraction shadow created when an object crosses the observers line of sight and occults the disk of a background star. One of our detections is most consistent with an object between Saturn and Uranus. The two other diffraction patterns detected are caused by Kuiper Belt objects beyond 100 AU from the Sun and hence are the farthest known objects in the solar system. These detections show that the Kuiper Belt is much more extended than previously believed and that the outer part of the disk could be composed of smaller objects than the inner part. This gives critical clues to understanding the problem of the formation of the outer planets of the solar system.


Science Advances | 2015

Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko

H. Balsiger; Kathrin Altwegg; Akiva Bar-Nun; Jean-Jacques Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; Johan De Keyser; P. Eberhardt; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Annette Jäckel; Ernest Kopp; A. Korth; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Tobias Owen; H. Rème; Martin Rubin; Thierry Sémon; Chia-Yu Tzou; J. Hunter Waite

ROSINA/DFMS shows that comets of type 67P/CG likely did not significantly contribute to Earth’s volatile budget. Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope 36Ar and by the 36Ar/38Ar ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth’s major volatiles.

Collaboration


Dive into the Olivier Mousis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Rousselot

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar

S. Picaud

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. A. Fuselier

Southwest Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge