Olivier Ouari
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivier Ouari.
Angewandte Chemie | 2009
Yoh Matsuki; Thorsten Maly; Olivier Ouari; Hakim Karoui; François Le Moigne; Egon Rizzato; Sevdalina Lyubenova; Judith Herzfeld; Thomas F. Prisner; Paul Tordo; Robert G. Griffin
A new polarizing agent with superior performance in dynamic nuclear polarization experiments is introduced, and utilizes two TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) moieties connected through a rigid spiro tether (see structure). The observed NMR signal intensities were enhanced by a factor of 1.4 compared to those of TOTAPOL, a previously described TEMPO-based biradical with a flexible tether.
Angewandte Chemie | 2013
Claire Sauvée; Melanie Rosay; Gilles Casano; Fabien Aussenac; Ralph T. Weber; Olivier Ouari; Paul Tordo
Well polarized: Two new polarizing agents PyPol and AMUPol soluble in glycerol/water mixtures are used for dynamic nuclear polarization (DNP) NMR spectroscopy. The enhancement factors (e) are about 3.5 to 4 times larger than for the established agent TOTAPOL at 263 and 395 GHz. For AMUPol, the temperature dependence of e allows DNP experiments to be performed at temperatures significantly higher than for typical high-field DNP NMR experiments.
Journal of the American Chemical Society | 2013
Alexandre Zagdoun; Gilles Casano; Olivier Ouari; Martin Schwarzwälder; Aaron J. Rossini; Fabien Aussenac; Maxim Yulikov; Gunnar Jeschke; Christophe Copéret; Anne Lesage; Paul Tordo; Lyndon Emsley
A series of seven functionalized nitroxide biradicals (the bTbK biradical and six derivatives) are investigated as exogenous polarization sources for dynamic nuclear polarization (DNP) solid-state NMR at 9.4 T and with ca. 100 K sample temperatures. The impact of electron relaxation times on the DNP enhancement (ε) is examined, and we observe that longer inversion recovery and phase memory relaxation times provide larger ε. All radicals are tested in both bulk 1,1,2,2-tetrachloroethane solutions and in mesoporous materials, and the difference in ε between the two cases is discussed. The impact of the sample temperature and magic angle spinning frequency on ε is investigated for several radicals each characterized by a range of electron relaxation times. In particular, TEKPol, a bulky derivative of bTbK with a molecular weight of 905 g·mol(-1), is presented. Its high-saturation factor makes it a very efficient polarizing agent for DNP, yielding unprecedented proton enhancements of over 200 in both bulk and materials samples at 9.4 T and 100 K. TEKPol also yields encouraging enhancements of 33 at 180 K and 12 at 200 K, suggesting that with the continued improvement of radicals large ε may be obtained at higher temperatures.
Journal of the American Chemical Society | 2012
Alexandre Zagdoun; Gilles Casano; Olivier Ouari; Giuseppe Lapadula; Aaron J. Rossini; Moreno Lelli; Mathieu Baffert; David Gajan; Laurent Veyre; Werner E. Maas; Melanie Rosay; Ralph T. Weber; Chloé Thieuleux; Christophe Copéret; Anne Lesage; Paul Tordo; Lyndon Emsley
A new nitroxide-based biradical having a long electron spin-lattice relaxation time (T(1e)) has been developed as an exogenous polarization source for DNP solid-state NMR experiments. The performance of this new biradical is demonstrated on hybrid silica-based mesostructured materials impregnated with 1,1,2,2-tetrachloroethane radical containing solutions, as well as in frozen bulk solutions, yielding DNP enhancement factors (ε) of over 100 at a magnetic field of 9.4 T and sample temperatures of ~100 K. The effects of radical concentration on the DNP enhancement factors and on the overall sensitivity enhancements (Σ(†)) are reported. The relatively high DNP efficiency of the biradical is attributed to an increased T(1e), which enables more effective saturation of the electron resonance. This new biradical is shown to outperform the polarizing agents used so far in DNP surface-enhanced NMR spectroscopy of materials, yielding a 113-fold increase in overall sensitivity for silicon-29 CPMAS spectra as compared to conventional NMR experiments at room temperature. This results in a reduction in experimental times by a factor >12,700, making the acquisition of (13)C and (15)N one- and two-dimensional NMR spectra at natural isotopic abundance rapid (hours). It has been used here to monitor a series of chemical reactions carried out on the surface functionalities of a hybrid organic-silica material.
Angewandte Chemie | 2012
Aaron J. Rossini; Alexandre Zagdoun; Moreno Lelli; Jérôme Canivet; Sonia Aguado; Olivier Ouari; Paul Tordo; Melanie Rosay; Werner E. Maas; Christophe Copéret; David Farrusseng; Lyndon Emsley; Anne Lesage
Dynamic nuclear polarization (DNP) is applied to enhance the signal of solid-state NMR spectra of metal-organic framework (MOF) materials. The signal enhancement enables the acquisition of high-quality 1D 13C solid-state NMR spectra, 2D 1H-13C dipolar HETCOR and 1D 15N solid-state NMR spectra with natural isotopic abundance in experiment times on the order of minutes.
Journal of Biological Chemistry | 2012
Jacek Zielonka; Monika Zielonka; Adam Sikora; Jan Adamus; Joy Joseph; Micael Hardy; Olivier Ouari; Brian P. Dranka; B. Kalyanaraman
Background: Recently, new “targeted” fluorescent probes that react selectively with reactive oxygen and nitrogen species to yield specific products have been discovered. Results: High-throughput fluorescence and HPLC-based methodology for global profiling of ROS/RNS is described. Conclusion: This methodology enables real-time monitoring of multiple oxidants in cellular systems. Significance: The global profiling approach using different ROS/RNS-specific fluorescent probes will help establish the identity of oxidants in redox regulation and signaling. Herein we describe a high-throughput fluorescence and HPLC-based methodology for global profiling of reactive oxygen and nitrogen species (ROS/RNS) in biological systems. The combined use of HPLC and fluorescence detection is key to successful implementation and validation of this methodology. Included here are methods to specifically detect and quantitate the products formed from interaction between the ROS/RNS species and the fluorogenic probes, as follows: superoxide using hydroethidine, peroxynitrite using boronate-based probes, nitric oxide-derived nitrosating species with 4,5-diaminofluorescein, and hydrogen peroxide and other oxidants using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red) with and without horseradish peroxidase, respectively. In this study, we demonstrate real-time monitoring of ROS/RNS in activated macrophages using high-throughput fluorescence and HPLC methods. This global profiling approach, simultaneous detection of multiple ROS/RNS products of fluorescent probes, developed in this study will be useful in unraveling the complex role of ROS/RNS in redox regulation, cell signaling, and cellular oxidative processes and in high-throughput screening of anti-inflammatory antioxidants.
Angewandte Chemie | 2010
Pascal Miéville; Puneet Ahuja; Riddhiman Sarkar; Sami Jannin; Paul R. Vasos; Sandrine Gerber-Lemaire; Mor Mishkovsky; Arnaud Comment; Rolf Gruetter; Olivier Ouari; Paul Tordo; Geoffrey Bodenhausen
This enhance-ment arises from thermal mixing, which is brought about bymicrowavesaturationoftheEPRtransitionsofstableradicalsthat are mixed with the sample under investigation beforefreezing. In dissolution DNP, the sample is usually polarizedat low temperatures and moderate magnetic fields (T=1.2 Kand B
Chemical Communications | 2012
Alexandre Zagdoun; Aaron J. Rossini; David Gajan; Adrien Bourdolle; Olivier Ouari; Melanie Rosay; Werner E. Maas; Paul Tordo; Moreno Lelli; Lyndon Emsley; Anne Lesage; Christophe Copéret
A series of non-aqueous solvents combined with the exogenous biradical bTbK are developed for DNP NMR that yield enhancements comparable to the best available water based systems. 1,1,2,2-tetrachloroethane appears to be one of the most promising organic solvents for DNP solid-state NMR. Here this results in a reduction in experimental times by a factor of 1000. These new solvents are demonstrated with the first DNP surface enhanced NMR characterization of an organometallic complex supported on a hydrophobic surface.
Journal of the American Chemical Society | 2010
Evgeniy S. Salnikov; Melanie Rosay; Shane Pawsey; Olivier Ouari; Paul Tordo; Burkhard Bechinger
Oriented membrane samples encompassing the biradical bTbK and a transmembrane peptide carrying a single (15)N labeled residue have been prepared on polymer sheets with sample geometries that fit into a 3.2 mm MAS rotor. The proton-decoupled (15)N cross-polarization spectra of the peptide were characterized by a single line at fast magic angle spinning speeds of approximately 8 kHz. Irradiating these samples with mu-waves resulted in Dynamic Nuclear Polarization and a concomitant 18-fold signal enhancement which considerably shortened the NMR acquisition times. Furthermore, the sideband patterns of magic angle oriented sample spinning (MAOSS) solid-state NMR spectra at slow spinning speeds (approximately 1 kHz) are indicative that the lipids and peptides form well-oriented bilayers at 100 K despite the narrow inner diameter of the rotor (2.2 mm) and the presence of considerable amounts of biradicals. The DNP signal enhancement opens up enhanced possibilities for multidimensional solid-state NMR investigation of oriented membrane polypeptides.
Journal of Organic Chemistry | 2012
Eric L. Dane; Björn Corzilius; Egon Rizzato; Pierre Stocker; Thorsten Maly; Albert A. Smith; Robert G. Griffin; Olivier Ouari; Paul Tordo; Timothy M. Swager
The synthesis and characterization of oxidized bis-thioketal-trispiro dinitroxide biradicals that orient the nitroxides in a rigid, approximately orthogonal geometry are reported. The biradicals show better performance as polarizing agents in dynamic nuclear polarization (DNP) NMR experiments as compared to biradicals lacking the constrained geometry. In addition, the biradicals display improved solubility in aqueous media due to the presence of polar sulfoxides. The results suggest that the orientation of the radicals is not dramatically affected by the oxidation state of the sulfur atoms in the biradical, and we conclude that a biradical polarizing agent containing a mixture of oxidation states can be used for improved solubility without a loss in performance.