Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Plantard is active.

Publication


Featured researches published by Olivier Plantard.


Parasites & Vectors | 2013

Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe

Jolyon M. Medlock; Kayleigh M. Hansford; Antra Bormane; Markéta Derdáková; Agustín Estrada-Peña; Jean-Claude George; Irina Golovljova; Thomas G. T. Jaenson; Jens-Kjeld Jensen; Per Moestrup Jensen; Mária Kazimírová; José Oteo; Anna Papa; Kurt Pfister; Olivier Plantard; Sarah E. Randolph; Annapaola Rizzoli; Maria Margarida Santos-Silva; Hein Sprong; Laurence Vial; Guy Hendrickx; Hervé Zeller; Wim Van Bortel

Many factors are involved in determining the latitudinal and altitudinal spread of the important tick vector Ixodes ricinus (Acari: Ixodidae) in Europe, as well as in changes in the distribution within its prior endemic zones. This paper builds on published literature and unpublished expert opinion from the VBORNET network with the aim of reviewing the evidence for these changes in Europe and discusses the many climatic, ecological, landscape and anthropogenic drivers. These can be divided into those directly related to climatic change, contributing to an expansion in the tick’s geographic range at extremes of altitude in central Europe, and at extremes of latitude in Scandinavia; those related to changes in the distribution of tick hosts, particularly roe deer and other cervids; other ecological changes such as habitat connectivity and changes in land management; and finally, anthropogenically induced changes. These factors are strongly interlinked and often not well quantified. Although a change in climate plays an important role in certain geographic regions, for much of Europe it is non-climatic factors that are becoming increasingly important. How we manage habitats on a landscape scale, and the changes in the distribution and abundance of tick hosts are important considerations during our assessment and management of the public health risks associated with ticks and tick-borne disease issues in 21st century Europe. Better understanding and mapping of the spread of I. ricinus (and changes in its abundance) is, however, essential to assess the risk of the spread of infections transmitted by this vector species. Enhanced tick surveillance with harmonized approaches for comparison of data enabling the follow-up of trends at EU level will improve the messages on risk related to tick-borne diseases to policy makers, other stake holders and to the general public.


Veterinary Research | 2009

Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission.

Alain Chauvin; Emmanuelle Moreau; Sarah Bonnet; Olivier Plantard; Laurence Malandrin

Babesia, the causal agent of babesiosis, are tick-borne apicomplexan protozoa. True babesiae (Babesia genus sensu stricto) are biologically characterized by direct development in erythrocytes and by transovarial transmission in the tick. A large number of true Babesia species have been described in various vertebrate and tick hosts. This review presents the genus then discusses specific adaptations of Babesia spp. to their hosts to achieve efficient transmission. The main adaptations lead to long-lasting interactions which result in the induction of two reservoirs: in the vertebrate host during low long-term parasitemia and throughout the life cycle of the tick host as a result of transovarial and transstadial transmission. The molecular bases of these adaptations in vertebrate hosts are partially known but few of the tick-host interaction mechanisms have been elucidated.


Molecular Ecology | 2008

Origin and genetic diversity of Western European populations of the potato cyst nematode (Globodera pallida) inferred from mitochondrial sequences and microsatellite loci

Olivier Plantard; D. Picard; S. Valette; M. Scurrah; Eric Grenier; D. Mugniéry

Native to South America, the potato cyst nematode Globodera pallida is one of the principal pests of Andean potato crops and is also an important global pest following its introduction to Europe, Africa, North America, Asia and Oceania. Building on earlier work showing a clear south to north phylogeographic pattern in Peruvian populations, we have been able to identify the origin of Western European populations with high accuracy. They are all derived from a single restricted area in the extreme south of Peru, located between the north shore of the Lake Titicaca and Cusco. Only four cytochrome b haplotypes are found in Western Europe, one of them being also found in some populations of this area of southern Peru. The allelic richness at seven microsatellite loci observed in the Western European populations, although only one‐third of that observed in this part of southern Peru, is comparable to the allelic richness observed in the northern region of Peru. This result could be explained by the fact that most of the genetic variability observed at the scale of a field or even of a region is already observed at the scale of a single plant within a field. Thus, even introduction via a single infected potato plant could result in the relatively high genetic variability observed in Western Europe. This finding has important consequences for the control of this pest and the development of quarantine measures.


Molecular Ecology | 2004

Population genetic structure of the sugar beet cyst nematode Heterodera schachtii: a gonochoristic and amphimictic species with highly inbred but weakly differentiated populations

Olivier Plantard; C. Porte

The sugar beet cyst nematode Heterodera schachtii is a soil‐dwelling phytoparasitic nematode that feeds on beet roots. It is an important pest in most sugar beet growing areas, and better knowledge of its genetic variability is an important step to preserve the durability of resistant sugar beet varieties. The population genetic structure of this species in northern France was studied using five microsatellite markers. A hierarchical sampling design was used to investigate spatial structuring at the scale of the region, the field and the plant. Multilocus genotypes were obtained for single individual second‐stage larvae, using only one individual per cyst in order to avoid the analysis of closely allied individuals (larvae from the same cyst share at least the same mother). A consistent trend of heterozygote deficit at all loci was observed at all spatial scales. Heterozygote deficit at the level of individual plants argues against its generation through a Wahlund effect. Inbreeding could be due to very limited active dispersal of larvae in the soil, favouring mating between siblings, such as larvae emerging from the same cyst. Such behaviour could have important consequences for the evolution of virulence in increasing the production of homozygous virulent individuals. Moreover, an analysis of molecular variance (amova) reveals that only 1.6% of the genetic variability is observed among regions, 3.7% among fields of the same region and 94.6% within fields. The very low level of genetic differentiation among fields is also indicated by low values of FST (≤ 0.105) even for fields 150 km apart. We suggest that long‐distance gene flows occur due to passive transport of cysts by human activities, water or wind. As such mechanisms of gene flow would involve cysts and not larvae, the strong signals of inbreeding observed at the local scale should not be disrupted. To our knowledge, this study constitutes the first investigation of the genetic structure of a phytoparasitic nematode based on neutral codominant genetic markers scored in single individuals.


Molecular Ecology | 2004

Inbreeding and population structure of the potato cyst nematode (Globodera pallida) in its native area (Peru)

D. Picard; Olivier Plantard; M. Scurrah; D. Mugniéry

The dispersal abilities and the population genetic structure of nematodes living in the soil are poorly known. In the present study, we have pursued these issues in the potato cyst nematode Globodera pallida, which parasitizes potato roots and is indigenous to South America. A hierarchical sampling regime was conducted in Peru to investigate gene flow on regional, field and plant scales. Multilocus genotypes of single individuals were obtained using eight polymorphic microsatellites markers. Large heterozygote deficiencies were observed at most loci. The limited active dispersal of larvae from their cyst, which favours mating between (half) siblings, could be responsible for this pattern. Within fields, as well as among fields within regions (even 35 km apart), low FST values suggest extensive gene flow. Among fields within regions, only 1.5–4.4% genetic variability was observed. Passive dispersal of cysts by natural means (wind, running water, or wild animals) or by anthropogenic means (tillage, movement of infected seed tubers) is probably responsible for the results observed. Among regions, high FST values were observed. Thus long‐range dispersal (more than 320 km apart) is probably limited by major biogeographical barriers such as the mountains found in the Andean Cordillera. These results provide useful information for the management of resistant varieties, to slow down the emergence and spread of resistance‐breaking pathotypes.


PLOS ONE | 2012

Detection of Wolbachia in the Tick Ixodes ricinus is Due to the Presence of the Hymenoptera Endoparasitoid Ixodiphagus hookeri

Olivier Plantard; Agnès Bouju-Albert; Marie-Astrid Malard; Axelle Hermouet; Gilles Capron; Hélène Verheyden

The identification of micro-organisms carried by ticks is an important issue for human and animal health. In addition to their role as pathogen vectors, ticks are also the hosts for symbiotic bacteria whose impact on tick biology is poorly known. Among these, the bacterium Wolbachia pipientis has already been reported associated with Ixodes ricinus and other tick species. However, the origins of Wolbachia in ticks and their consequences on tick biology (known to be very diverse in invertebrates, ranging from nutritional symbionts in nematodes to reproductive manipulators in insects) are unknown. Here we report that the endoparasitoid wasp Ixodiphagus hookeri (Hymenoptera, Chalcidoidea, Encyrtidae) – strictly associated with ticks for their development - is infested at almost 100% prevalence by a W. pipientis strain belonging to a Wolbachia supergroup that has already been reported as associated with other hymenopteran parasitoids. In a natural population of I. ricinus that suffers high parasitism rates due to I. hookeri, we used specific PCR primers for both hymenopteran and W. pipientis gene fragments to show that all unfed tick nymphs parasitized by I. hookeri also harbored Wolbachia, while unparasitized ticks were Wolbachia-free. We demonstrated experimentally that unfed nymphs obtained from larvae exposed to I. hookeri while gorging on their vertebrate host also harbor Wolbachia. We hypothesize that previous studies that have reported W. pipientis in ticks are due to the cryptic presence of the endoparasitoid wasp I. hookeri. This association has remained hidden until now because parasitoids within ticks cannot be detected until engorgement of the nymphs brings the wasp eggs out of diapause. Finally, we discuss the consequences of this finding for our understanding of the tick microbiome, and their possible role in horizontal gene transfer among pathogenic and symbiotic bacteria.


Nucleic Acids Research | 2015

Reference-free detection of isolated SNPs

Raluca Uricaru; Guillaume Rizk; Vincent Lacroix; Elsa Quillery; Olivier Plantard; Rayan Chikhi; Claire Lemaitre; Pierre Peterlongo

Detecting single nucleotide polymorphisms (SNPs) between genomes is becoming a routine task with next-generation sequencing. Generally, SNP detection methods use a reference genome. As non-model organisms are increasingly investigated, the need for reference-free methods has been amplified. Most of the existing reference-free methods have fundamental limitations: they can only call SNPs between exactly two datasets, and/or they require a prohibitive amount of computational resources. The method we propose, discoSnp, detects both heterozygous and homozygous isolated SNPs from any number of read datasets, without a reference genome, and with very low memory and time footprints (billions of reads can be analyzed with a standard desktop computer). To facilitate downstream genotyping analyses, discoSnp ranks predictions and outputs quality and coverage per allele. Compared to finding isolated SNPs using a state-of-the-art assembly and mapping approach, discoSnp requires significantly less computational resources, shows similar precision/recall values, and highly ranked predictions are less likely to be false positives. An experimental validation was conducted on an arthropod species (the tick Ixodes ricinus) on which de novo sequencing was performed. Among the predicted SNPs that were tested, 96% were successfully genotyped and truly exhibited polymorphism.


Molecular Ecology | 2017

Evolutionary changes in symbiont community structure in ticks

Olivier Duron; Florian Binetruy; Valérie Noël; Julie Cremaschi; Karen D. McCoy; Céline Arnathau; Olivier Plantard; John A. Goolsby; Adalberto A. Pérez de León; Dieter Heylen; A. Raoul Van Oosten; Yuval Gottlieb; Gad Baneth; Alberto A. Guglielmone; Agustín Estrada-Peña; Maxwell N. Opara; Lionel Zenner; Fabrice Vavre; Christine Chevillon

Ecological specialization to restricted diet niches is driven by obligate, and often maternally inherited, symbionts in many arthropod lineages. These heritable symbionts typically form evolutionarily stable associations with arthropods that can last for millions of years. Ticks were recently found to harbour such an obligate symbiont, Coxiella‐LE, that synthesizes B vitamins and cofactors not obtained in sufficient quantities from blood diet. In this study, the examination of 81 tick species shows that some Coxiella‐LE symbioses are evolutionarily stable with an ancient acquisition followed by codiversification as observed in ticks belonging to the Rhipicephalus genus. However, many other Coxiella‐LE symbioses are characterized by low evolutionary stability with frequent host shifts and extinction events. Further examination revealed the presence of nine other genera of maternally inherited bacteria in ticks. Although these nine symbionts were primarily thought to be facultative, their distribution among tick species rather suggests that at least four may have independently replaced Coxiella‐LE and likely represent alternative obligate symbionts. Phylogenetic evidence otherwise indicates that cocladogenesis is globally rare in these symbioses as most originate via horizontal transfer of an existing symbiont between unrelated tick species. As a result, the structure of these symbiont communities is not fixed and stable across the tick phylogeny. Most importantly, the symbiont communities commonly reach high levels of diversity with up to six unrelated maternally inherited bacteria coexisting within host species. We further conjecture that interactions among coexisting symbionts are pivotal drivers of community structure both among and within tick species.


Parasites & Vectors | 2011

Colonization of Grande Comore Island by a lineage of Rhipicephalus appendiculatus ticks

Amina Yssouf; Erwan Lagadec; Annabelle Bakari; Coralie Foray; Frédéric Stachurski; Eric Cardinale; Olivier Plantard; Pablo Tortosa

BackgroundUnion of the Comoros suffered a severe East Coast Fever epidemic in 2004. Rhipicephalus appendiculatus was probably involved in pathogen transmission as this competent tick species, although previously absent from Comoros, was sampled on 4 animals on one geographical site during the epidemic. We carried out an entomological survey on all three islands of Union of the Comoros to establish cattle tick species distribution with a special emphasis on R. appendiculatus. We investigated R. appendiculatus intraspecific diversity as this species has been previously shown to be split off into two main cytoplasmic lineages with different ecology, physiology and vectorial competence. This survey also included sampling of live cattle imported from Tanzania to investigate the possibility of tick introduction through animal trade.ResultsOur data show that Comoros cattle are infested with Amblyomma variegatum, Rhipicephalus microplus and R. appendiculatus. This latter species has established throughout Grande Comore but is absent from Anjouan and Moheli. Interestingly, 43 out of the 47 sequenced R. appendiculatus ticks belong to one single highly competent lineage while ticks from the other lineage where only found on imported cattle or on cattle parked at the vicinity of the harbor. At last, 2 ticks identified as R. evertsi, a species so far virtually absent on Comoros, were sampled on imported cattle.ConclusionsThis survey shows that importation of live cattle is clearly a source of vector introduction in Comoros. The wide distribution of one highly competent R. appendiculatus lineage on Grande Comore, together with the absence of this species on the two neighbouring islands is in accordance with the rapid and disastrous spread of East Coast Fever epidemics on Grande Comore Island only. Whether the other R. appendiculatus lineage as well as R. evertsi species will succeed in establishing permanently on Grande Comore needs to be monitored.


Archive | 2012

How Does Biodiversity Influence the Ecology of Infectious Disease

Gwenaël Vourc’h; Olivier Plantard; Serge Morand

Over the past years, biodiversity has been reduced on an unprecedented scale, while new infectious diseases are emerging at an increasing rate. Greater overall biodiversity could lead to a greater diversity of hosts and thus of pathogens. Yet disease regulation – due to the buffering role of host diversity – is considered to be one of the services provided by biodiversity. In this chapter, we ask how biodiversity is linked to infectious disease. First, we investigate the influence of the biodiversity of pathogens. We highlight that the number of pathogen species is not well known but that new findings are facilitated by the rapid expansion of molecular techniques. We show that, although there is a trend to find higher pathogen richness toward the equator, identifying a global pattern between the richness of all pathogen species and their latitudinal distribution is challenging. We emphasize that pathogen intraspecific diversity is a crucial factor in disease emergence and allows pathogens to adapt to the selective pressures they face. In addition, the selective pressure acting on hosts due to parasite, and reinforced by parasite diversity within hosts seems to be a major evolutionary and ecological force shaping hosts biodiversity. Second, we investigate how the diversity of hosts influences infectious disease ecology. For multi-host diseases, a change in host species richness or abundance can modify the dynamics of local infectious diseases by either reducing (“dilution effect”) or increasing (“amplification effect”) the risk of transmission to the targeted host species. The underlying hypothesis is that, the competence of reservoirs varies according to the host species. The dilution effect has been demonstrated mainly through theoretical work and there have been only few case studies. Regarding the genetic diversity of host, an important issue is: to what extent does a reduction of this diversity impact the ability of the host population to response to infectious diseases? Third, we rapidly examine the role of biodiversity in the treatment of infectious diseases. To conclude, we consider that the consequences of the loss of species biodiversity on infectious diseases is still largely unknown, notably due to the lack of knowledge on the dynamics of host-pathogen relationships, especially at the population and at the community level.. We highlight that work on multi-host/ ulti-pathogen systems should be fostered and that new approaches, such as metagenomic investigations that does not require a priori assumptions, are promising to describe a community of pathogens and their interactions.

Collaboration


Dive into the Olivier Plantard's collaboration.

Top Co-Authors

Avatar

Albert Agoulon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suzanne Bastian

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sándor Hornok

Szent István University

View shared research outputs
Top Co-Authors

Avatar

Grégoire Perez

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sarah Bonnet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Thierry Hoch

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claude Rispe

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge