Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Roupsard is active.

Publication


Featured researches published by Olivier Roupsard.


Science | 2010

Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate

Christian Beer; Markus Reichstein; Enrico Tomelleri; Philippe Ciais; Martin Jung; Nuno Carvalhais; Christian Rödenbeck; M. Altaf Arain; Dennis D. Baldocchi; Gordon B. Bonan; Alberte Bondeau; Alessandro Cescatti; Gitta Lasslop; Anders Lindroth; Mark R. Lomas; Sebastiaan Luyssaert; Hank A. Margolis; Keith W. Oleson; Olivier Roupsard; Elmar M. Veenendaal; Nicolas Viovy; Christopher M. Williams; F. Ian Woodward; Dario Papale

Carbon Cycle and Climate Change As climate change accelerates, it is important to know the likely impact of climate change on the carbon cycle (see the Perspective by Reich). Gross primary production (GPP) is a measure of the amount of CO2 removed from the atmosphere every year to fuel photosynthesis. Beer et al. (p. 834, published online 5 July) used a combination of observation and calculation to estimate that the total GPP by terrestrial plants is around 122 billion tons per year; in comparison, burning fossil fuels emits about 7 billion tons annually. Thirty-two percent of this uptake occurs in tropical forests, and precipitation controls carbon uptake in more than 40% of vegetated land. The temperature sensitivity (Q10) of ecosystem respiratory processes is a key determinant of the interaction between climate and the carbon cycle. Mahecha et al. (p. 838, published online 5 July) now show that the Q10 of ecosystem respiration is invariant with respect to mean annual temperature, independent of the analyzed ecosystem type, with a global mean value for Q10 of 1.6. This level of temperature sensitivity suggests a less-pronounced climate sensitivity of the carbon cycle than assumed by recent climate models. A combination of data and models provides an estimate of how much photosynthesis by all the world’s plants occurs each year. Terrestrial gross primary production (GPP) is the largest global CO2 flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 ± 8 petagrams of carbon per year (Pg C year−1) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP’s latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate–carbon cycle process models.


Nature | 2010

Recent decline in the global land evapotranspiration trend due to limited moisture supply

Martin Jung; Markus Reichstein; Philippe Ciais; Sonia I. Seneviratne; Justin Sheffield; Michael L. Goulden; Gordon B. Bonan; Alessandro Cescatti; Jiquan Chen; Richard de Jeu; A. Johannes Dolman; Werner Eugster; Dieter Gerten; Damiano Gianelle; Nadine Gobron; Jens Heinke; John S. Kimball; Beverly E. Law; Leonardo Montagnani; Qiaozhen Mu; Brigitte Mueller; Keith W. Oleson; Dario Papale; Andrew D. Richardson; Olivier Roupsard; Steve Running; Enrico Tomelleri; Nicolas Viovy; Ulrich Weber; Christopher A. Williams

More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land—a key diagnostic criterion of the effects of climate change and variability—remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.


Global Biogeochemical Cycles | 2009

Temporal and among-site variability of inherent water use efficiency at the ecosystem level

Christian Beer; Philippe Ciais; Markus Reichstein; Dennis D. Baldocchi; Beverly E. Law; D. Papale; J. F. Soussana; C. Ammann; Nina Buchmann; Dorothea Frank; Damiano Gianelle; Ivan A. Janssens; Alexander Knohl; Barbara Köstner; E.J. Moors; Olivier Roupsard; Hans Verbeeck; Timo Vesala; Christopher A. Williams; G. Wohlfahrt

Half-hourly measurements of the net exchanges of carbon dioxide and water vapor between terrestrial ecosystems and the atmosphere provide estimates of gross primary production (GPP) and evapotranspiration (ET) at the ecosystem level and on daily to annual timescales. The ratio of these quantities represents ecosystem water use efficiency. Its multiplication with mean daylight vapor pressure deficit (VPD) leads to a quantity which we call “inherent water use efficiency” (IWUE*). The dependence of IWUE* on environmental conditions indicates possible adaptive adjustment of ecosystem physiology in response to a changing environment. IWUE* is analyzed for 43 sites across a range of plant functional types and climatic conditions. IWUE* increases during short-term moderate drought conditions. Mean annual IWUE* varied by a factor of 3 among all sites. This is partly explained by soil moisture at field capacity, particularly in deciduous broad-leaved forests. Canopy light interception sets the upper limits to canopy photosynthesis, and explains half the variance in annual IWUE* among herbaceous ecosystems and evergreen needle-leaved forests. Knowledge of IWUE* offers valuable improvement to the representation of carbon and water coupling in ecosystem process models


Global Biogeochemical Cycles | 2011

Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales

Youngryel Ryu; Dennis D. Baldocchi; Hideki Kobayashi; Catharine van Ingen; Jie Li; T. Andy Black; Jason Beringer; Eva van Gorsel; Alexander Knohl; Beverly E. Law; Olivier Roupsard

linear relations with measurements of solar irradiance (r 2 = 0.95, relative bias: 8%), gross primary productivity (r 2 = 0.86, relative bias: 5%) and evapotranspiration (r 2 = 0.86, relative bias: 15%) in data from 33 flux towers that cover seven plant functional types across arctic to tropical climatic zones. A sensitivity analysis revealed that the gross primary productivity and evapotranspiration computed in BESS were most sensitive to leaf area index and solar irradiance, respectively. We quantified the mean global terrestrial estimates of gross primary productivity and evapotranpiration between 2001 and 2003 as 118 � 26 PgC yr � 1 and 500 � 104 mm yr � 1 (equivalent to 63,000 � 13,100 km 3 yr � 1 ), respectively. BESS-derived gross primary productivity and evapotranspiration estimates were consistent with the estimates from independent machine-learning, data-driven products, but the process-oriented structure has the advantage of diagnosing sensitivity of mechanisms. The process-based BESS is able to offer gridded biophysical variables everywhere from local to the total global land scales with an 8-day interval over multiple years.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Joint control of terrestrial gross primary productivity by plant phenology and physiology

Jianyang Xia; Shuli Niu; Philippe Ciais; Ivan A. Janssens; Jiquan Chen; C. Ammann; Altaf Arain; Peter D. Blanken; Alessandro Cescatti; Damien Bonal; Nina Buchmann; Peter James Curtis; Shiping Chen; Jinwei Dong; Lawrence B. Flanagan; Christian Frankenberg; Teodoro Georgiadis; Christopher M. Gough; Dafeng Hui; Gerard Kiely; Jianwei Li; Magnus Lund; Vincenzo Magliulo; Barbara Marcolla; Lutz Merbold; Leonardo Montagnani; E.J. Moors; Jørgen E. Olesen; Shilong Piao; Antonio Raschi

Significance Terrestrial gross primary productivity (GPP), the total photosynthetic CO2 fixation at ecosystem level, fuels all life on land. However, its spatiotemporal variability is poorly understood, because GPP is determined by many processes related to plant phenology and physiological activities. In this study, we find that plant phenological and physiological properties can be integrated in a robust index—the product of the length of CO2 uptake period and the seasonal maximal photosynthesis—to explain the GPP variability over space and time in response to climate extremes and during recovery after disturbance. Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.


Experimental Agriculture | 2005

Assimilate storage in vegetative organs of coconut (#Cocos nucifera#)

Isabelle Mialet-Serra; Anne Clément; Nicole Sonderegger; Olivier Roupsard; Christophe Jourdan; Jean-Pierre Labouisse; Michael Dingkuhn

Assimilate storage in vegetative organs is an essential buffer for the source–sink imbalances that inevitably occur in perennial plants. In contrast to temperate trees, little information is available on such storage in tropical perennials, and almost none for Cocos nucifera . This paper describes the chemical nature, quantity and distribution of carbohydrate reserves in coconut plants grown in an environment favourable to production. The study was carried out on the island of Santo (Republic of Vanuatu, Southern Pacific) on twelve 17-year-old adult plants, representative of a large population, which were felled and characterized for root, trunk and crown dry matter, and contents of soluble sugars and starch. Roots were divided into three diameter classes and distal/proximal portions, the trunk into three axial and three or four radial zones, and the crown into petiole, rachis and leaflets for various leaf ages. The aggregate reserve pool size was compared with estimates of incremental demand for assimilates for growth and fruit production. Plants contained little starch but large quantities of sucrose were found, mainly located in the trunk. Less sucrose was present in roots and little in leaf blades. Large glucose and fructose pools were found in leaves, near the apex of the trunk and in the terminal portions of large roots. Aggregate soluble and non-soluble sugar pools were about equivalent to six months of copra production or 51 days of crop growth. More studies are needed on the dynamics of these sugars to evaluate their physiological role, particularly with regards to stress periods and fluctuating demand for fruit filling.


Journal of Geophysical Research | 2011

Seasonal variation of photosynthetic model parameters and leaf area index from global Fluxnet eddy covariance data

M. Groenendijk; A. J. Dolman; C. Ammann; Almut Arneth; Alessandro Cescatti; Danilo Dragoni; J.H.C. Gash; Damiano Gianelle; B. Gioli; Gerard Kiely; Alexander Knohl; Beverly E. Law; Magnus Lund; Barbara Marcolla; M. K. van der Molen; Leonardo Montagnani; E.J. Moors; Andrew D. Richardson; Olivier Roupsard; Hans Verbeeck; G. Wohlfahrt

Global vegetation models require the photosynthetic parameters, maximum carboxylation capacity (V(cm)), and quantum yield (alpha) to parameterize their plant functional types (PFTs). The purpose of this work is to determine how much the scaling of the parameters from leaf to ecosystem level through a seasonally varying leaf area index (LAI) explains the parameter variation within and between PFTs. Using Fluxnet data, we simulate a seasonally variable LAI(F) for a large range of sites, comparable to the LAI(M) derived from MODIS. There are discrepancies when LAI(F) reach zero levels and LAI(M) still provides a small positive value. We find that temperature is the most common constraint for LAI(F) in 55% of the simulations, while global radiation and vapor pressure deficit are the key constraints for 18% and 27% of the simulations, respectively, while large differences in this forcing still exist when looking at specific PFTs. Despite these differences, the annual photosynthesis simulations are comparable when using LAI(F) or LAIM (r(2) = 0.89). We investigated further the seasonal variation of ecosystem-scale parameters derived with LAI(F). V(cm) has the largest seasonal variation. This holds for all vegetation types and climates. The parameter alpha is less variable. By including ecosystem-scale parameter seasonality we can explain a considerable part of the ecosystem-scale parameter variation between PFTs. The remaining unexplained leaf-scale PFT variation still needs further work, including elucidating the precise role of leaf and soil level nitrogen.


Journal of Hydrometeorology | 2012

Modeling Potential Equilibrium States of Vegetation and Terrestrial Water Cycle of Mesoamerica under Climate Change Scenarios

Pablo Imbach; Luis Guillermo Molina; Bruno Locatelli; Olivier Roupsard; Gil Mahé; Ronald P. Neilson; Lenin Corrales; Marko Scholze; Philippe Ciais

The likelihood and magnitude of the impacts of climate change on potential vegetation and the water cycle in Mesoamerica is evaluated. Mesoamerica is a global biodiversity hotspot with highly diverse topographic and climatic conditions and is among the tropical regions with the highest expected changes in precipitation and temperature under future climate scenarios. The biogeographic soil-vegetation-atmosphere model Mapped Atmosphere Plant Soil System (MAPSS) was used for simulating the integrated changes in leaf area index (LAI), vegetation types (grass, shrubs, and trees), evapotranspiration, and runoff at the end of the twenty-first century. Uncertainty was estimated as the likelihood of changes in vegetation and water cycle under three ensembles of model runs, one for each of the groups of greenhouse gas emission scenarios (low, intermediate, and high emissions), for a total of 136 runs generated with 23 general circulation models (GCMs). LAI is likely to decrease over 77%-89% of the region, depending on climate scenario groups, showing that potential vegetation will likely shift from humid to dry types. Accounting for potential effects of CO2 on water use efficiency significantly decreased impacts on LAI. Runoff will decrease across the region even in areas where precipitation increases (even under increased water use efficiency), as temperature change will increase evapotranspiration. Higher emission scenarios show lower uncertainty (higher likelihood) in modeled impacts. Although the projection spread is high for future precipitation, the impacts of climate change on vegetation and water cycle are predicted with relatively low uncertainty.


Journal of Geophysical Research | 2016

Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites

Yanlian Zhou; Xiaocui Wu; Weimin Ju; Jing M. Chen; Shaoqiang Wang; Huimin Wang; Wenping Yuan; T. Andrew Black; Rachhpal S. Jassal; Andreas Ibrom; Shijie Han; Junhua Yan; Hank A. Margolis; Olivier Roupsard; Yingnian Li; Fenghua Zhao; Gerard Kiely; Gregory Starr; Marian Pavelka; Leonardo Montagnani; Georg Wohlfahrt; Petra D'Odorico; David R. Cook; M. Altaf Arain; Damien Bonal; Jason Beringer; Peter D. Blanken; Benjamin Loubet; Monique Y. Leclerc; Giorgio Matteucci

Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (epsilon(msh)) was 2.63 to 4.59 times that of sunlit leaves (epsilon(msu)). Generally, the relationships of epsilon(msh) and epsilon(msu) with epsilon(max) were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems, and it is more robust with regard to usual biases in input data than existing approaches which neglect the bimodal within-canopy distribution of PAR.


Plant and Soil | 2011

Genotypic variability of oil palm root system distribution in the field. Consequences for water uptake

Léifi Nodichao; Jean-Louis Chopart; Olivier Roupsard; Michel Vauclin; Séverin Aké; Christophe Jourdan

Previous studies relating root systems and drought tolerance in oil palm focused mainly on biomass. Yet, total root length (TRL), total root surface area (TRS), and root distribution in the soil better determine water uptake. These morphological traits were studied on 3 oil palm genotypes displaying a contrasting drought tolerance. A new concept of potential root water extraction ratio (PRER) was developed using measured half-distances between roots and some assumptions about the distance of water migration from soil to root. PRER was determined in conjunction with soil moisture extraction efficiency (SMEE). The presumed tolerant genotype (T) had higher TRL, TRS and PRER than the susceptible genotype (S), whilst the performance of the control genotype (I) was intermediate. Surprisingly, during a period of moderate water deficit, T had a lower SMEE than S, which was interpreted successfully with PRER, as the result of a better access to a large volume of soil and of a slower drying out of the soil around the roots. PRER appears as a helpful indicator for comparing or ranking genotypes, and for addressing better the complexity of the genetic variability of drought tolerance.

Collaboration


Dive into the Olivier Roupsard's collaboration.

Top Co-Authors

Avatar

Yann Nouvellon

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Jean-Marc Bonnefond

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guerric Le Maire

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Laurent Saint-André

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bruno Rapidel

Centro Agronómico Tropical de Investigación y Enseñanza

View shared research outputs
Top Co-Authors

Avatar

Paul Berbigier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Richard Joffre

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge