Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Schwartz is active.

Publication


Featured researches published by Olivier Schwartz.


Nature | 2011

SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx

Nadine Laguette; Bijan Sobhian; Nicoletta Casartelli; Mathieu Ringeard; Christine Chable-Bessia; Emmanuel Ségéral; Ahmad Yatim; Stéphane Emiliani; Olivier Schwartz; Monsef Benkirane

The primate lentivirus auxiliary protein Vpx counteracts an unknown restriction factor that renders human dendritic and myeloid cells largely refractory to HIV-1 infection. Here we identify SAMHD1 as this restriction factor. SAMHD1 is a protein involved in Aicardi–Goutières syndrome, a genetic encephalopathy with symptoms mimicking congenital viral infection, that has been proposed to act as a negative regulator of the interferon response. We show that Vpx induces proteasomal degradation of SAMHD1. Silencing of SAMHD1 in non-permissive cell lines alleviates HIV-1 restriction and is associated with a significant accumulation of viral DNA in infected cells. Concurrently, overexpression of SAMHD1 in sensitive cells inhibits HIV-1 infection. The putative phosphohydrolase activity of SAMHD1 is probably required for HIV-1 restriction. Vpx-mediated relief of restriction is abolished in SAMHD1-negative cells. Finally, silencing of SAMHD1 markedly increases the susceptibility of monocytic-derived dendritic cells to infection. Our results demonstrate that SAMHD1 is an antiretroviral protein expressed in cells of the myeloid lineage that inhibits an early step of the viral life cycle.


Journal of Experimental Medicine | 2003

DC-SIGN Is the Major Mycobacterium tuberculosis Receptor on Human Dendritic Cells

Ludovic Tailleux; Olivier Schwartz; Jean-Louis Herrmann; Elisabeth Pivert; Mary Jackson; Ali Amara; Luc Legres; Donatus Dreher; Laurent P. Nicod; Jean Claude Gluckman; Philippe H. Lagrange; Brigitte Gicquel; Olivier Neyrolles

Early interactions between lung dendritic cells (LDCs) and Mycobacterium tuberculosis, the etiological agent of tuberculosis, are thought to be critical for mounting a protective anti-mycobacterial immune response and for determining the outcome of infection. However, these interactions are poorly understood, at least at the molecular level. Here we show that M. tuberculosis enters human monocyte-derived DCs after binding to the recently identified lectin DC-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN). By contrast, complement receptor (CR)3 and mannose receptor (MR), which are the main M. tuberculosis receptors on macrophages (Mφs), appeared to play a minor role, if any, in mycobacterial binding to DCs. The mycobacteria-specific lipoglycan lipoarabinomannan (LAM) was identified as a key ligand of DC-SIGN. Freshly isolated human LDCs were found to express DC-SIGN, and M. tuberculosis–derived material was detected in CD14−HLA-DR+DC-SIGN+ cells in lymph nodes (LNs) from patients with tuberculosis. Thus, as for human immunodeficiency virus (HIV), which is captured by the same receptor, DC-SIGN–mediated entry of M. tuberculosis in DCs in vivo is likely to influence bacterial persistence and host immunity.


EMBO Reports | 2003

Dendritic‐cell‐specific ICAM3‐grabbing non‐integrin is essential for the productive infection of human dendritic cells by mosquito‐cell‐derived dengue viruses

Erika Navarro-Sanchez; Ralf Altmeyer; Ali Amara; Olivier Schwartz; Franck Fieschi; Jean-Louis Virelizier; Fernando Arenzana-Seisdedos; Philippe Desprès

Dengue virus (DV) is a mosquito‐borne flavivirus that causes haemorrhagic fever in humans. DV primarily targets immature dendritic cells (DCs) after a bite by an infected mosquito vector. Here, we analysed the interactions between DV and human‐monocyte‐derived DCs at the level of virus entry. We show that the DC‐specific ICAM3‐grabbing non‐integrin (DC‐SIGN) molecule, a cell‐surface, mannose‐specific, C‐type lectin, binds mosquito‐cell‐derived DVs and allows viral replication. Conclusive evidence for the involvement of DC‐SIGN in DV infection was obtained by the inhibition of viral infection by anti‐DC‐SIGN antibodies and by the soluble tetrameric ectodomain of DC‐SIGN. Our data show that DC‐SIGN functions as a DV‐binding lectin by interacting with the DV envelope glycoprotein. Mosquito‐cell‐derived DVs may have differential infectivity for DC‐SIGN‐expressing cells. We suggest that the differential use of DC‐SIGN by viral envelope glycoproteins may account for the immunopathogenesis of DVs.


Immunity | 1998

Nef Interacts with the μ Subunit of Clathrin Adaptor Complexes and Reveals a Cryptic Sorting Signal in MHC I Molecules

Sylvie Le Gall; Lars Erdtmann; Serge Benichou; Clarisse Berlioz-Torrent; Langxia Liu; Richard Benarous; Jean-Michel Heard; Olivier Schwartz

The surface expression of MHC I is reduced in HIV-infected cells. We show that the Nef protein affects the intracellular sorting of HLA-A and -B molecules. In the presence of Nef, these proteins accumulate in the Golgi and colocalize with clathrin-coated vesicles. MHC I modulation relies on a tyrosine-based sorting signal located in the cytoplasmic domain of HLA-A and -B heavy chains. This cryptic sorting signal becomes operative only in the presence of Nef. Nef interacts with the medium (mu) subunit of AP adaptor complexes involved in the recognition of tyrosine-based sorting signals, likely facilitating the connection between MHC I and the clathrin-dependent sorting machinery.


Nature Reviews Microbiology | 2010

Biology and pathogenesis of chikungunya virus.

Olivier Schwartz; Matthew L. Albert

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for a recent, unexpectedly severe epidemic in countries of the Indian Ocean region. Although many alphaviruses have been well studied, little was known about the biology and pathogenesis of CHIKV at the time of the 2005 outbreak. Over the past 5 years there has been a multidisciplinary effort aimed at deciphering the clinical, physiopathological, immunological and virological features of CHIKV infection. This Review highlights some of the most recent advances in our understanding of the biology of CHIKV and its interactions with the host.


Nature | 2005

APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses

Cécile Esnault; Odile Heidmann; Frédéric Delebecque; Marie Dewannieux; David Ribet; Allan J. Hance; Thierry Heidmann; Olivier Schwartz

Endogenous retroviruses are multicopy retroelements accounting for nearly 10% of murine or human genomes. These retroelements spread into our ancestral genome millions of years ago and have acted as a driving force for genome evolution. Endogenous retroviruses may also be deleterious for their host, and have been implicated in cancers and autoimmune diseases. Most retroelements have lost replication competence because of the accumulation of inactivating mutations, but several, including some murine intracisternal A-particle (IAP) and MusD sequences, are still mobile. These elements encode a reverse transcriptase activity and move by retrotransposition, an intracellular copy-and-paste process involving an RNA intermediate. The host has developed mechanisms to silence their expression, mainly cosuppression and gene methylation. Here we identify another level of antiviral control, mediated by APOBEC3G, a member of the cytidine deaminase family that was previously shown to block HIV replication. We show that APOBEC3G markedly inhibits retrotransposition of IAP and MusD elements, and induces G-to-A hypermutations in their DNA copies. APOBEC3G, by editing viral genetic material, provides an ancestral wide cellular defence against endogenous and exogenous invaders.


PLOS Pathogens | 2007

Characterization of Reemerging Chikungunya Virus

Marion Sourisseau; Clémentine Schilte; Nicoletta Casartelli; Céline Trouillet; Florence Guivel-Benhassine; Dominika Rudnicka; Nathalie Sol-Foulon; Karin Le Roux; Marie-Christine Prévost; Hafida Fsihi; Marie-Pascale Frenkiel; Fabien Blanchet; Philippe V. Afonso; Pierre-Emmanuel Ceccaldi; Simona Ozden; Antoine Gessain; Isabelle Schuffenecker; Bruno Verhasselt; Alessia Zamborlini; Ali Saïb; Félix A. Rey; Fernando Arenzana-Seisdedos; Philippe Desprès; Alain Michault; Matthew L. Albert; Olivier Schwartz

An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host.


Proceedings of the National Academy of Sciences of the United States of America | 2001

HIV-1 Nef impairs MHC class II antigen presentation and surface expression

Pamela Stumptner-Cuvelette; Stéphanie Morchoisne; Marc Dugast; Sylvie Le Gall; Graça Raposo; Olivier Schwartz; Philippe Benaroch

HIV-1-infected cells can avoid cytotoxic T lymphocyte killing by Nef-mediated down-regulation of surface MHC I. Here, we show that HIV-1 Nef inhibits MHC II restricted peptide presentation to specific T cells and thus may affect the induction of antiviral immune responses. Nef mediates this effect by reducing the surface level of mature (i.e., peptide-loaded) MHC II while increasing levels of immature MHC II, which are functionally incompetent because of their association with the invariant chain. Nef was the only HIV-1 gene product to possess this capacity, which was also observed in the context of the whole HIV-1 genome. Other proteins of the endocytic pathway were not affected by Nef expression, suggesting that Nef effects on MHC II did not result from a general alteration of the endocytic pathway. Response patterns to previously characterized mutations of Nef differed for Nef-induced modulation of mature and immature MHC II. Furthermore, the doses of Nef required to observe each of the two effects were clearly different, suggesting that Nef could affect MHC II peptide presentation through distinct mechanisms. Cooperation between those mechanisms may enable Nef to efficiently inhibit MHC II function.


Journal of Virology | 2001

Human Immunodeficiency Virus Type 1 Entry into Macrophages Mediated by Macropinocytosis

Valérie Maréchal; Marie-Christine Prévost; Caroline Petit; Emmanuelle Perret; Jean-Michel Heard; Olivier Schwartz

ABSTRACT Whereas human immunodeficiency virus (HIV) infects various cell types by fusion at the plasma membrane, we observed a different entry route in human primary macrophages, in which macropinocytosis is active. Shortly after exposure of macrophages to HIV-1 and irrespective of viral envelope-receptor interactions, particles were visible in intracellular vesicles, which were identified as macropinosomes. Most virions appeared subsequently degraded. However, fusion leading to capsid release in the cytosol and productive infection could take place inside vesicles when particles were properly enveloped. These observations provide new insights into HIV-1 interactions with a cell target relevant to pathogenesis. They may have implications for the design of soluble inhibitors aimed at interfering with the fusion or entry processes.


Journal of Virology | 2007

Inefficient Human Immunodeficiency Virus Replication in Mobile Lymphocytes

Marion Sourisseau; Nathalie Sol-Foulon; Françoise Porrot; Fabien Blanchet; Olivier Schwartz

ABSTRACT Cell-to-cell viral transfer facilitates the spread of lymphotropic retroviruses such as human immunodeficiency virus (HIV) and human T-cell leukemia virus (HTLV), likely through the formation of “virological synapses” between donor and target cells. Regarding HIV replication, the importance of cell contacts has been demonstrated, but this phenomenon remains only partly characterized. In order to alter cell-to-cell HIV transmission, we have maintained cultures under continuous gentle shaking and followed viral replication in this experimental system. In lymphoid cell lines, as well as in primary lymphocytes, viral replication was dramatically reduced in shaken cultures. To document this phenomenon, we have developed an assay to assess the relative contributions of free and cell-associated virions in HIV propagation. Acutely infected donor cells were mixed with carboxyfluorescein diacetate succinimidyl ester-labeled lymphocytes as targets, and viral production was followed by measuring HIV Gag expression at different time points by flow cytometry. We report that cellular contacts drastically enhance productive viral transfer compared to what is seen with infection with free virus. Productive cell-to-cell viral transmission required fusogenic viral envelope glycoproteins on donor cells and adequate receptors on targets. Only a few syncytia were observed in this coculture system. Virus release from donor cells was unaffected when cultures were gently shaken, whereas virus transfer to recipient cells was severely impaired. Altogether, these results indicate that cell-to-cell transfer is the predominant mode of HIV spread and help to explain why this virus replicates so efficiently in lymphoid organs.

Collaboration


Dive into the Olivier Schwartz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marion Sourisseau

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge