Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Staub is active.

Publication


Featured researches published by Olivier Staub.


The EMBO Journal | 2001

Phosphorylation of Nedd4‐2 by Sgk1 regulates epithelial Na+ channel cell surface expression

Christophe Debonneville; Sandra Y. Flores; Elena Kamynina; Pamela J. Plant; Caroline Tauxe; Marc A. Thomas; Carole Münster; Ahmed Chraibi; J. Howard Pratt; Jean-Daniel Horisberger; David Pearce; Johannes Loffing; Olivier Staub

The epithelial Na+ channel (ENaC) plays an essential role in the regulation of whole body Na+ balance and blood pressure. The cell surface expression of this channel, a complex of three subunits (α, β and γENaC), has been shown to be regulated by hormones such as aldosterone and vasopressin and by intracellular signaling, including ubiquitylation and/or phosphorylation. However, the molecular mechanisms involving phosphorylation in the regulation of ENaC are unclear. Here we show by expression studies in Xenopus laevis oocytes that the aldosterone‐induced Sgk1 kinase interacts with the ubiquitin protein ligase Nedd4‐2 in a PY motif‐dependent manner and phosphorylates Nedd4‐2 on Ser444 and, to a lesser extent, Ser338. Such phosphorylation reduces the interaction between Nedd4‐2 and ENaC, leading to elevated ENaC cell surface expression. These data show that phosphorylation of an enzyme involved in the ubiquitylation cascade (Nedd4‐2) controls cell surface density of ENaC and propose a paradigm for the control of ion channels. Moreover, they suggest a novel and complete signaling cascade for aldosterone‐dependent regulation of ENaC.


The Journal of Membrane Biology | 2000

Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases.

D. Rotin; Olivier Staub; Rosine Haguenauer-Tsapis

Abstract. In addition to its well-known role in recognition by the proteasome, ubiquitin-conjugation is also involved in downregulation of membrane receptors, transporters and channels. In most cases, ubiquitination of these plasma membrane proteins leads to their internalization followed by targeting to the lysosome/vacuole for degradation. A crucial role in ubiquitination of many plasma membrane proteins appears to be played by ubiquitin-protein ligases of the Nedd4/Rsp5p family. All family members carry an N-terminal Ca2+-dependent lipid/protein binding (C2) domain, two to four WW domains and a C-terminal catalytic Hect-domain. Nedd4 is involved in downregulation of the epithelial Na+ channel, by binding of its WW domains to specific PY motifs of the channel. Rsp5p, the unique family member in S. cerevisiae, is involved in ubiquitin-dependent endocytosis of a great number of yeast plasma membrane proteins. These proteins lack apparent PY motifs, but carry acidic sequences, and/or phosphorylated-based sequences that might be important, directly or indirectly, for their recognition by Rsp5p. In contrast to polyubiquitination leading to proteasomal recognition, a number of Rsp5p targets carry few ubiquitins per protein, and moreover with a different ubiquitin linkage. Accumulating evidence suggests that, at least in yeast, ubiquitin itself may constitute an internalization signal, recognized by a hypothetical receptor. Recent data also suggest that Nedd4/Rsp5p might play a role in the endocytic process possibly involving its C2 domain, in addition to its role in ubiquitinating endocytosed proteins.


Journal of Clinical Investigation | 1999

Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome

Hugues Abriel; Johannes Loffing; John F. Rebhun; J. Howard Pratt; Laurent Schild; Jean-Daniel Horisberger; Daniela Rotin; Olivier Staub

Liddles syndrome is an inherited form of hypertension linked to mutations in the epithelial Na+ channel (ENaC). ENaC is composed of three subunits (alpha, beta, gamma), each containing a COOH-terminal PY motif (xPPxY). Mutations causing Liddles syndrome alter or delete the PY motifs of beta- or gamma-ENaC. We recently demonstrated that the ubiquitin-protein ligase Nedd4 binds these PY motifs and that ENaC is regulated by ubiquitination. Here, we investigate, using the Xenopus oocyte system, whether Nedd4 affects ENaC function. Overexpression of wild-type Nedd4, together with ENaC, inhibited channel activity, whereas a catalytically inactive Nedd4 stimulated it, likely by acting as a competitive antagonist to endogenous Nedd4. These effects were dependant on the PY motifs, because no Nedd4-mediated changes in channel activity were observed in ENaC lacking them. The effect of Nedd4 on ENaC missing only one PY motif (of beta-ENaC), as originally described in patients with Liddles syndrome, was intermediate. Changes were due entirely to alterations in ENaC numbers at the plasma membrane, as determined by surface binding and immunofluorescence. Our results demonstrate that Nedd4 is a negative regulator of ENaC and suggest that the loss of Nedd4 binding sites in ENaC observed in Liddles syndrome may explain the increase in channel number at the cell surface, increased Na+ reabsorption by the distal nephron, and hence the hypertension.


The FASEB Journal | 2001

A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel

Elena Kamynina; Christophe Debonneville; Marcelle Bens; Alain Vandewalle; Olivier Staub

Liddles syndrome is a form of inherited hypertension linked to mutations in the genes encoding the epithelial Na+ channel (ENaC). These mutations alter or delete PY motifs involved in protein–protein interactions with a ubiquitin‐protein ligase, Nedd4. Here we show that Na+ transporting cells, derived from mouse cortical collecting duct, express two Nedd4 proteins with different structural organization and characteristics of ENaC regulation: 1) the classical Nedd4 (herein referred to as Nedd4–1) containing one ammo‐terminal C2, three WW, and one HECT‐ubiquitin protein ligase domain and 2) a novel Nedd4 protein (Nedd4–2), homologous to Xenopus Nedd4 and comprising four WW, one HECT, yet lacking a C2 domain. Nedd4–2, but not Nedd4–1, inhibits ENaC activity when coexpressed in Xenopus oocytes and this property correlates with the ability to bind to ENaC, as only Nedd4–2 coimmunoprecipitates with ENaC. Furthermore, this interaction depends on the presence of at least one PY motif in the ENaC complex and on WW domains 3 and 4 in Nedd4–2. Thus, these results suggest that the novel suppressor protein Nedd4–2 is the regulator of ENaC and hence a potential susceptibility gene for arterial hypertension.—Kamynina, E., Debonneville, C., Bens, M., Vandewalle, A., Staub, O. A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. . FASEB J. 15, 204–214 (2001)


The EMBO Journal | 2003

Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex

Stan F. J. van de Graaf; Joost G. J. Hoenderop; Dimitra Gkika; Dennis Lamers; Jean Prenen; Ursula Rescher; Volker Gerke; Olivier Staub; Bernd Nilius; René J. M. Bindels

TRPV5 and TRPV6 constitute the Ca2+ influx pathway in a variety of epithelial cells. Here, we identified S100A10 as the first auxiliary protein of these epithelial Ca2+ channels using yeast two‐hybrid and GST pull‐down assays. This S100 protein forms a heterotetrameric complex with annexin 2 and associates specifically with the conserved sequence VATTV located in the C‐terminal tail of TRPV5 and TRPV6. Of these five amino acids, the first threonine plays a crucial role since the corresponding mutants (TRPV5 T599A and TRPV6 T600A) exhibited a diminished capacity to bind S100A10, were redistributed to a subplasma membrane area and did not display channel activity. Using GST pull‐down and co‐immunoprecipitation assays we demonstrated that annexin 2 is part of the TRPV5–S100A10 complex. Furthermore, the S100A10–annexin 2 pair colocalizes with the Ca2+ channels in TRPV5‐expressing renal tubules and TRPV6‐expressing duodenal cells. Importantly, downregulation of annexin 2 using annexin 2‐specific small interfering RNA inhibited TRPV5 and TRPV6‐mediated currents in transfected HEK293 cells. In conclusion, the S100A10–annexin 2 complex plays a crucial role in routing of TRPV5 and TRPV6 to plasma membrane.


Circulation Research | 2004

Cardiac Voltage-Gated Sodium Channel Nav1.5 Is Regulated by Nedd4-2 Mediated Ubiquitination

Miguel X. van Bemmelen; Jean-Sébastien Rougier; Bruno Gavillet; Florine Apothéloz; Dorothée Daidié; Michihiro Tateyama; Ilaria Rivolta; Marc A. Thomas; Robert S. Kass; Olivier Staub; Hugues Abriel

Nav1.5, the cardiac isoform of the voltage-gated Na+ channel, is critical to heart excitability and conduction. However, the mechanisms regulating its expression at the cell membrane are poorly understood. The Nav1.5 C-terminus contains a PY-motif (xPPxY) that is known to act as binding site for Nedd4/Nedd4-like ubiquitin-protein ligases. Because Nedd4-2 is well expressed in the heart, we investigated its role in the ubiquitination and regulation of Nav1.5. Yeast two-hybrid and GST-pulldown experiments revealed an interaction between Nav1.5 C-terminus and Nedd4-2, which was abrogated by mutating the essential tyrosine of the PY-motif. Ubiquitination of Nav1.5 was detected in both transfected HEK cells and heart extracts. Furthermore, Nedd4-2–dependent ubiquitination of Nav1.5 was observed. To test for a functional role of Nedd4-2, patch-clamp experiments were performed on HEK cells expressing wild-type and mutant forms of both Nav1.5 and Nedd4-2. Nav1.5 current density was decreased by 65% upon Nedd4-2 cotransfection, whereas the PY-motif mutant channels were not affected. In contrast, a catalytically inactive Nedd4-2 had no effect, indicating that ubiquitination mediates this downregulation. However, Nedd4-2 did not alter the whole-cell or the single channel biophysical properties of Nav1.5. Consistent with the functional findings, localization at the cell periphery of Nav1.5-YFP fusion proteins was reduced upon Nedd4-2 coexpression. The Nedd4-1 isoform did not regulate Nav1.5, suggesting that Nedd4-2 is a specific regulator of Nav1.5. These results demonstrate that Nav1.5 can be ubiquitinated in heart tissues and that the ubiquitin-protein ligase Nedd4-2 acts on Nav1.5 by decreasing the channel density at the cell surface.


Cellular Physiology and Biochemistry | 2003

SGK1: Aldosterone-Induced Relay of Na+ Transport Regulation in Distal Kidney Nephron Cells

François Verrey; Johannes Loffing; Marija Zecevic; Dirk Heitzmann; Olivier Staub

Aldosterone increases within 30 min renal Na+reabsorption and K+secretion by a mechanism that is triggered at the level of gene transcription. Thus, gene products that are rapidly up- or down-regulated transmit this effect to the transport machinery within the distal nephron target cells. One such rapidly up-regulated gene product is a structural element of the transport machinery, namely the a subunit of ENaC. Its amount might in certain conditions play a rate limiting role for Na+transport. Cell-surface localization and function of ENaC and of the Na,K-ATPase are also tightly controlled by a complex regulatory network and aldosterone appears to acutely regulate the expression of elements of this network such as the small G-protein K-Ras (in A6 cells) and the kinase SGK1 (also in ENaC-expressing cells of the mammalian distal nephron). The kinase SGK1 is an early aldosterone-induced protein that relays signals from pathways that are transmitted via PDK1/2 and possibly PKA. Active SGK1 has been shown to increase ENaC and Na,K-ATPase cell-surface expression in Xenopus oocytes. This effect at the level of ENaC has been recently shown to be mediated by the ubiquitin ligase Nedd4-2 which is a direct target of SGK1. Once phosphorylated by SGK1, Nedd4-2 is prevented from interacting with ENaC and thus from decreasing ENaC cell-surface expression. This SGK1-Nedd4-2-ENaC pathway is the first direct link between aldosterone-induced transcriptional regulation and the function of the Na+transport machinery to be unravelled. The physiological importance of this pathway for mediating the aldosterone response in different target epithelia remains to be verified in vivo, in particular in view of the axial gradient of ENaC apical translocation observed along the aldosterone-sensitive distal nephron.


Journal of The American Society of Nephrology | 2007

Early Aldosterone-Induced Gene Product Regulates the Epithelial Sodium Channel by Deubiquitylation

Panagiotis Fakitsas; Gabriele Adam; Dorothée Daidié; Miguel X. van Bemmelen; Fatemeh Fouladkou; Andrea Patrignani; Ulrich Wagner; Richard Warth; Simone M. R. Camargo; Olivier Staub; François Verrey

The mineralocorticoid hormone aldosterone controls sodium reabsorption and BP largely by regulating the cell-surface expression and function of the epithelial sodium channel (ENaC) in target kidney tubules. Part of the stimulatory effect of aldosterone on ENaC is mediated by the induction of serum- and glucocorticoid-regulated kinase 1 (Sgk1), a kinase that interferes with the ubiquitylation of ENaC by ubiquitin-protein ligase Nedd4-2. In vivo early aldosterone-regulated mRNA now has been identified in microselected mouse distal nephron by microarray. From 22 mRNA that displayed a two-fold or more change, 13 were downregulated and nine were upregulated. Besides Sgk1, the induced mRNA include Grem2 (protein related to DAN and cerebrus [PRDC]), activating transcription factor 3, cAMP responsive element modulator, and the ubiquitin-specific protease Usp2-45. The induction of this last enzyme isoform was verified in mouse distal nephron tubule at the protein level. With the use of Hek293 cells, Xenopus oocytes, and mpkCCD(c14) cells as expression systems, it was shown that Usp2-45 deubiquitylates ENaC and stimulates ENaC-mediated sodium transport, an effect that is not additive to that of Sgk1. A deubiquitylating enzyme that targets ENaC in vitro and thus may play a role in sodium transport regulation was identified within a series of new in vivo early aldosterone-regulated gene products.


Journal of Cell Science | 2004

Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding

Vincent Blot; Fabien Perugi; Marie-Christine Prévost; Laurence Briant; Frédéric Tangy; Hugues Abriel; Olivier Staub; Marie-Christine Dokhélar; Claudine Pique

One of the most exciting recent developments in the field of retroviruses is the finding that their Gag proteins hijack cellular proteins from the mutivesicular body (MVB) pathway during the budding process. The Gag proteins of oncoretroviruses possess a PPxY motif that recruits a ubiquitin ligase from the Nedd4 family, whereas those of the human immunodeficiency virus interact through a PTAP motif with Tsg101, a protein of the ESCRT-1 complex. It is currently assumed that Nedd4 and Tsg101 represent equivalent entry gates towards the same cellular process leading to budding, and that both partners are recruited to the plasma membrane where viral budding occurs. However, we report here that the budding of the human oncoretrovirus HTLV-1, the Gag proteins of which possess tandem PPPY/PTAP motifs, requires both Nedd4 and Tsg101. We show that Nedd4.1, but not Nedd4.2, is recruited by the PPPY motif of Gag and subsequently catalyzes Gag ubiquitination. We also demonstrate that Gag interacts first with Nedd4.1 at the plasma membrane and then with Tsg101 in late endosomes/MVBs. Consistently, we found that HTLV-1 particles mutated in the PPPY motif remain underneath the plasma membrane, blocked at an early step of the budding process, whereas PTAP-mutated viruses accumulate in intracellular vesicles, blocked at a later step. Our findings indicate that Nedd4.1 and Tsg101 act successively in the assembly process of HTLV-1 to ensure proper Gag trafficking through the endocytic pathway up to late endosomes where the late steps of retroviral release occur.


American Journal of Physiology-renal Physiology | 2008

Salt-sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4-2

Peijun P. Shi; Xiao R. Cao; Eileen M. Sweezer; Thomas S. Kinney; Nathan R. Williams; Russell F. Husted; Ramesh Nair; Robert M. Weiss; Roger A. Williamson; Curt D. Sigmund; Peter M. Snyder; Olivier Staub; John B. Stokes; Baoli Yang

Nedd4-2 has been proposed to play a critical role in regulating epithelial Na+ channel (ENaC) activity. Biochemical and overexpression experiments suggest that Nedd4-2 binds to the PY motifs of ENaC subunits via its WW domains, ubiquitinates them, and decreases their expression on the apical membrane. Phosphorylation of Nedd4-2 (for example by Sgk1) may regulate its binding to ENaC, and thus ENaC ubiquitination. These results suggest that the interaction between Nedd4-2 and ENaC may play a crucial role in Na+ homeostasis and blood pressure (BP) regulation. To test these predictions in vivo, we generated Nedd4-2 null mice. The knockout mice had higher BP on a normal diet and a further increase in BP when on a high-salt diet. The hypertension was probably mediated by ENaC overactivity because 1) Nedd4-2 null mice had higher expression levels of all three ENaC subunits in kidney, but not of other Na+ transporters; 2) the downregulation of ENaC function in colon was impaired; and 3) NaCl-sensitive hypertension was substantially reduced in the presence of amiloride, a specific inhibitor of ENaC. Nedd4-2 null mice on a chronic high-salt diet showed cardiac hypertrophy and markedly depressed cardiac function. Overall, our results demonstrate that in vivo Nedd4-2 is a critical regulator of ENaC activity and BP. The absence of this gene is sufficient to produce salt-sensitive hypertension. This model provides an opportunity to further investigate mechanisms and consequences of this common disorder.

Collaboration


Dive into the Olivier Staub's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Ronzaud

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge