Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Verlinden is active.

Publication


Featured researches published by Olivier Verlinden.


Medical Engineering & Physics | 2012

Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons

René Jiménez-Fabián; Olivier Verlinden

This review focuses on control strategies for robotic ankle systems in active and semiactive lower-limb orthoses, prostheses, and exoskeletons. Special attention is paid to algorithms for gait phase identification, adaptation to different walking conditions, and motion intention recognition. The relevant aspects of hardware configuration and hardware-level controllers are discussed as well. Control algorithms proposed for other actuated lower-limb joints (knee and/or hip), with potential applicability to the development of ankle devices, are also included.


International Journal of Rail Transportation | 2014

Railway-induced ground vibrations - a review of vehicle effects

Georges Kouroussis; David Connolly; Olivier Verlinden

This paper is a review of the effect of vehicle characteristics on ground- and track borne-vibrations from railways. It combines traditional theory with modern thinking and uses a range of numerical analysis and experimental results to provide a broad analysis of the subject area. First, the effect of different train types on vibration propagation is investigated. Then, despite not being the focus of this work, numerical approaches to vibration propagation modelling within the track and soil are briefly touched upon. Next an in-depth discussion is presented related to the evolution of numerical models, with analysis of the suitability of various modelling approaches for analysing vehicle effects. The differences between quasi-static and dynamic characteristics are also discussed with insights into defects such as wheel/rail irregularities. Additionally, as an appendix, a modest database of train types are presented along with detailed information related to their physical attributes. It is hoped that this information may provide assistance to future researchers attempting to simulate railway vehicle vibrations. It is concluded that train type and the contact conditions at the wheel/rail interface can be influential in the generation of vibration. Therefore, where possible, when using numerical approach, the vehicle should be modelled in detail. Additionally, it was found that there are a wide variety of modelling approaches capable of simulating train types effects. If non-linear behaviour needs to be included in the model, then time domain simulations are preferable, however if the system can be assumed linear then frequency domain simulations are suitable due to their reduced computational demand.


Journal of Engineering Mechanics-asce | 2011

Finite-Dynamic Model for Infinite Media: Corrected Solution of Viscous Boundary Efficiency

Georges Kouroussis; Olivier Verlinden; C. Conti

This paper presents the corrected development of viscous boundary efficiency initially proposed by Lysmer and Kuhlemeyer. The expressions of the energy ratio are given, in accordance with the original numerical results, and confirm the authors’ recommendations to minimize the reflected energy of body waves that impinge on the artificial boundary.


Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit | 2009

Ground propagation of vibrations from railway vehicles using a finite/infinite-element model of the soil

Georges Kouroussis; Olivier Verlinden; C. Conti

Abstract The purpose of this study is to investigate the generation and propagation of ground vibrations induced by railway traffic, more specifically in the case of urban vehicles. The complete vehicle—track—soil model is developed according to an uncoupled approach: the vehicle—track subsystem is first simulated so as to provide the ground forces which, in turn, are applied to the model of the soil. The vehicle—track model is built with the help of the home-made C++library


Advances in Engineering Software | 2014

Using three-dimensional finite element analysis in time domain to model railway-induced ground vibrations

Georges Kouroussis; L. Van Parys; C. Conti; Olivier Verlinden

For the prediction of ground vibrations generated by railway traffic, finite element analysis (FEA) appears as a competitive alternative to simulation tools based on the boundary element method: it is largely used in industry and does not suffer any limitation regarding soil geometry or material properties. However, boundary conditions must be properly defined along the domain border so as to mimic the effect of infinity for ground wave propagation. This paper presents a full three-dimensional FEA for the prediction of railway ground-borne vibrations. Non-reflecting boundaries are compared to fixed and free boundary conditions, especially concerning their ability to model the soil wave propagation and reflection. Investigations with commercial FEA software ABAQUS are presented also, with the development of an external meshing tool, so as to automatically define the infinite elements at the model boundary. Considering that ground wave propagation is a transient problem, the problem is formulated in the time domain. The influence of the domain dimension and of the element size is analysed and rules are established to optimise accuracy and computational burden. As an example, the structural response of a building is simulated, considering homogeneous or layered soil, during the passage of a tram at constant speed.


Vehicle System Dynamics | 2010

On the interest of integrating vehicle dynamics for the ground propagation of vibrations: the case of urban railway traffic

Georges Kouroussis; Olivier Verlinden; C. Conti

This paper presents a complete numerical model for studying the vertical dynamics of the vehicle/track interaction and its impact on the surrounding soil, with the emphasis on vehicle modelling. A decoupling between the track and the soil is proposed, due to the difficulty of considering all the subsystem components. The train/track model is based on a multibody model (for the vehicle) and a finite element model (for the track). The soil is modelled using an infinite/finite element approach. Simulations of both models are carried out in the time domain, which is better able to simulate the propagation of the vibration waves and to take into account the possible nonlinearity of a component. The methodology is applied in the case of an urban tram track and validated with the available experimental data. Models for the tram, the track and the soil are described. Results from the complete model of the vehicle and a simple model, based on an axle load, are compared with experimental results and the benefits of a complete model in the simulation of the ground vibration propagation induced by railway vehicles are demonstrated. Moreover, a parametric study of the vehicle wheel type is conducted, which shows the advantage of a resilient wheel, for various rail defects.


Science of The Total Environment | 2014

A numerical analysis of the influence of tram characteristics and rail profile on railway traffic ground-borne noise and vibration in the Brussels Region

Georges Kouroussis; N. Pauwels; Philippe Brux; C. Conti; Olivier Verlinden

Nowadays, damage potentially caused by passing train in dense cities is of increasing concern and restricts improvement to the interconnection of various public transport offers. Although experimental studies are common to quantify the effects of noise and vibration on buildings and on people, their reach is limited since the causes of vibrations can rarely be deduced from data records. This paper presents the numerical calculations that allow evaluating the main contributions of railway-induced ground vibrations in the vicinity of buildings. The reference case is the Brussels Region and, more particularly, the T2000 tram circulating in Brussels city. Based on a pertinent selection of the vibration assessment indicators and a numerical prediction approach, various results are presented and show that the free-field analysis is often improperly used in this kind of analysis as the interaction of soil and structure is required. Calculated high ground vibrations stem from singular rail surface defects. The use of resilient wheels is recommended in order to reduce the ground-borne noise and vibration to permissible values.


Theoretical and Applied Mechanics Letters | 2013

Symbolic generation of the kinematics of multibody systems in EasyDyn: From MuPAD to Xcas/Giac

Olivier Verlinden; Lassaad Ben Fekih; Georges Kouroussis

In the EasyDyn multibody open source project, computer algebra has been used from the beginning to generate the expressions of velocities and accelerations of the bodies, by symbolic differentiation of their position. Originally, the MuPAD computer algebra system had been retained because it was freely available for non commercial purposes and showed very good technical features. Unfortunately, MuPAD is nowadays only available through commercial channels and needs to be replaced to keep EasyDyn publicly available. This paper presents why Xcas/Giac is finally selected, among other long-term promising projects like Axiom, Maxima, Sage or Yacas. Among the choice criteria, the accessibility, the portability, the ease of use, the automatic export to C language, and the similarity with the MuPAD language are all considered. The performances of the MuPAD and Xcas/Giac implementations are also compared on some examples.


Vehicle System Dynamics | 2012

Influence of some vehicle and track parameters on the environmental vibrations induced by railway traffic

Georges Kouroussis; Olivier Verlinden; C. Conti

A study is performed on the influence of some typical railway vehicle and track parameters on the level of ground vibrations induced in the neighbourhood. The results are obtained from a previously validated simulation framework considering in a first step the vehicle/track subsystem and, in a second step, the response of the soil to the forces resulting from the first analysis. The vehicle is reduced to a simple vertical 3-dof model, corresponding to the superposition of the wheelset, the bogie and the car body. The rail is modelled as a succession of beam elements elastically supported by the sleepers, lying themselves on a flexible foundation representing the ballast and the subgrade. The connection between the wheels and the rails is realised through a non-linear Hertzian contact. The soil motion is obtained from a finite/infinite element model. The investigated vehicle parameters are its type (urban, high speed, freight, etc.) and its speed. For the track, the rail flexural stiffness, the railpad stiffness, the spacing between sleepers and the rail and sleeper masses are considered. In all cases, the parameter value range is defined from a bibliographic browsing. At the end, the paper proposes a table summarising the influence of each studied parameter on three indicators: the vehicle acceleration, the rail velocity and the soil velocity. It namely turns out that the vehicle has a serious influence on the vibration level and should be considered in prediction models.


Vehicle System Dynamics | 2013

Investigating the influence of soil properties on railway traffic vibration using a numerical model

Georges Kouroussis; C. Conti; Olivier Verlinden

This paper presents the influence of dynamic and geometrical soil parameters on the propagation of ground vibrations induced by external loads. The proposed approach is based on a three-dimensional model, focusing on realistic excitation sources like impulse loads and moving railway vehicles. For the latter, a complete vehicle/track model is developed. The simulation is performed in time domain, offering an interesting approach, compared with classic cyclic analyses. The ground is modelled initially as an elastic homogeneous half-space and additionally as a layered half-space. First, the effect of homogeneous soil properties on ground vibration is analysed. Soil stratification is then taken into account, using various configurations. Analysis reveals that as receiver distance increases ground wave reflection in a layered ground plays an important role in the reduction of ground surface motion. This effect is magnified when the phase velocity wavelength becomes large compared with the depth of the surface layer.

Collaboration


Dive into the Olivier Verlinden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge