Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Zwaenepoel is active.

Publication


Featured researches published by Olivier Zwaenepoel.


Breast Cancer Research | 2013

A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis

Katrien Van Impe; Jonas Bethuyne; Steven K. Cool; Francis Impens; David Ruano-Gallego; Olivier De Wever; Berlinda Vanloo; Marleen Van Troys; Kathleen Lambein; Ciska Boucherie; Evelien Martens; Olivier Zwaenepoel; Gholamreza Hassanzadeh-Ghassabeh; Joël Vandekerckhove; Kris Gevaert; Luis Ángel Fernández; Niek N. Sanders; Jan Gettemans

IntroductionAberrant turnover of the actin cytoskeleton is intimately associated with cancer cell migration and invasion. Frequently however, evidence is circumstantial, and a reliable assessment of the therapeutic significance of a gene product is offset by lack of inhibitors that target biologic properties of a protein, as most conventional drugs do, instead of the corresponding gene. Proteomic studies have demonstrated overexpression of CapG, a constituent of the actin cytoskeleton, in breast cancer. Indirect evidence suggests that CapG is involved in tumor cell dissemination and metastasis. In this study, we used llama-derived CapG single-domain antibodies or nanobodies in a breast cancer metastasis model to address whether inhibition of CapG activity holds therapeutic merit.MethodsWe raised single-domain antibodies (nanobodies) against human CapG and used these as intrabodies (immunomodulation) after lentiviral transduction of breast cancer cells. Functional characterization of nanobodies was performed to identify which biochemical properties of CapG are perturbed. Orthotopic and tail vein in vivo models of metastasis in nude mice were used to assess cancer cell spreading.ResultsWith G-actin and F-actin binding assays, we identified a CapG nanobody that binds with nanomolar affinity to the first CapG domain. Consequently, CapG interaction with actin monomers or actin filaments is blocked. Intracellular delocalization experiments demonstrated that the nanobody interacts with CapG in the cytoplasmic environment. Expression of the nanobody in breast cancer cells restrained cell migration and Matrigel invasion. Notably, the nanobody prevented formation of lung metastatic lesions in orthotopic xenograft and tail-vein models of metastasis in immunodeficient mice. We showed that CapG nanobodies can be delivered into cancer cells by using bacteria harboring a type III protein secretion system (T3SS).ConclusionsCapG inhibition strongly reduces breast cancer metastasis. A nanobody-based approach offers a fast track for gauging the therapeutic merit of drug targets. Mapping of the nanobody-CapG interface may provide a platform for rational design of pharmacologic compounds.


The FASEB Journal | 2014

Stratifying fascin and cortactin function in invadopodium formation using inhibitory nanobodies and targeted subcellular delocalization

Isabel Van Audenhove; Ciska Boucherie; Leen Pieters; Olivier Zwaenepoel; Berlinda Vanloo; Evelien Martens; Charlotte Verbrugge; Gholamreza Hassanzadeh-Ghassabeh; Joël Vandekerckhove; Maria Cornelissen; Ariane De Ganck; Jan Gettemans

Invadopodia are actin‐rich protrusions arising through the orchestrated regulation of precursor assembly, stabilization, and maturation, endowing cancer cells with invasive properties. Using nanobodies (antigen‐binding domains of Camelid heavy‐chain antibodies) as perturbators of intracellular functions and/or protein domains at the level of the endogenous protein, we examined the specific contribution of fascin and cortactin during invadopodium formation in MDA‐MB‐231 breast and PC‐3 prostate cancer cells. A nanobody (Kd~35 nM, 1:1 stoichiometry) that disrupts fascin F‐actin bundling emphasizes the importance of stable actin bundles in invadopodium array organization and turnover, matrix degradation, and cancer cell invasion. Cortactin‐SH3 dependent WIP recruitment toward the plasma membrane was specifically inhibited by a cortactin nanobody (Kd~75 nM, 1:1 stoichiometry). This functional domain is shown to be important for formation of properly organized invadopodia, MMP‐9 secretion, matrix degradation, and cancer cell invasion. Notably, using a subcellular delocalization strategy to trigger protein loss of function, we uncovered a fascin‐bundling‐independent role in MMP‐9 secretion. Hence, we demonstrate that nanobodies enable high resolution protein function mapping in cells.—Van Audenhove, I., Boucherie, C., Pieters, L., Zwaenepoel, O., Vanloo, B., Martens, E., Verbrugge, C., Hassanzadeh‐Ghassabeh, G., Vandekerckhove, J., Cornelissen, M., De Ganck, A., Gettemans, J. Stratifying fascin and cortactin function in invadopodium formation using inhibitory nanobodies and targeted subcellular delocalization. FASEB J. 28, 1805–1818 (2014). www.fasebj.org


Cellular and Molecular Life Sciences | 2013

Nanobody-induced perturbation of LFA-1/L-plastin phosphorylation impairs MTOC docking, immune synapse formation and T cell activation

Sarah De Clercq; Olivier Zwaenepoel; Evelien Martens; Joël Vandekerckhove; Aude Guillabert; Jan Gettemans

The T cell integrin receptor LFA-1 orchestrates adhesion between T cells and antigen-presenting cells (APCs), resulting in formation of a contact zone known as the immune synapse (IS) which is supported by the cytoskeleton. L-plastin is a leukocyte-specific actin bundling protein that rapidly redistributes to the immune synapse following T cell–APC engagement. We used single domain antibodies (nanobodies, derived from camelid heavy-chain only antibodies) directed against functional and structural modules of L-plastin to investigate its contribution to formation of an immune synapse between Raji cells and human peripheral blood mononuclear cells or Jurkat T cells. Nanobodies that interact either with the EF hands or the actin binding domains of L-plastin both trapped L-plastin in an inactive conformation, causing perturbation of IS formation, MTOC docking towards the plasma membrane, T cell proliferation and IL-2 secretion. Both nanobodies delayed Ser5 phosphorylation of L-plastin which is required for enhanced bundling activity. Moreover, one nanobody delayed LFA-1 phosphorylation, reduced the association between LFA-1 and L-plastin and prevented LFA-1 enrichment at the IS. Our findings reveal subtle mechanistic details that are difficult to attain by conventional means and show that L-plastin contributes to immune synapse formation at distinct echelons.


Human Molecular Genetics | 2015

An ER-directed gelsolin nanobody targets the first step in amyloid formation in a gelsolin amyloidosis mouse model

Wouter Van Overbeke; Jantana Wongsantichon; Inge Everaert; Adriaan Verhelle; Olivier Zwaenepoel; Anantasak Loonchanta; Leslie D. Burtnick; Ariane De Ganck; Tino Hochepied; Jody J. Haigh; Claude Cuvelier; Wim Derave; Robert Robinson; Jan Gettemans

Hereditary gelsolin amyloidosis is an autosomal dominantly inherited amyloid disorder. A point mutation in the GSN gene (G654A being the most common one) results in disturbed calcium binding by the second gelsolin domain (G2). As a result, the folding of G2 is hampered, rendering the mutant plasma gelsolin susceptible to a proteolytic cascade. Consecutive cleavage by furin and MT1-MMP-like proteases generates 8 and 5 kDa amyloidogenic peptides that cause neurological, ophthalmological and dermatological findings. To this day, no specific treatment is available to counter the pathogenesis. Using GSN nanobody 11 as a molecular chaperone, we aimed to protect mutant plasma gelsolin from furin proteolysis in the trans-Golgi network. We report a transgenic, GSN nanobody 11 secreting mouse that was used for crossbreeding with gelsolin amyloidosis mice. Insertion of the therapeutic nanobody gene into the gelsolin amyloidosis mouse genome resulted in improved muscle contractility. X-ray crystal structure determination of the gelsolin G2:Nb11 complex revealed that Nb11 does not directly block the furin cleavage site. We conclude that nanobodies can be used to shield substrates from aberrant proteolysis and this approach might establish a novel therapeutic strategy in amyloid diseases.


Molecular Therapy | 2014

Chaperone Nanobodies Protect Gelsolin Against MT1-MMP Degradation and Alleviate Amyloid Burden in the Gelsolin Amyloidosis Mouse Model

Wouter Van Overbeke; Adriaan Verhelle; Inge Everaert; Olivier Zwaenepoel; Joël Vandekerckhove; Claude Cuvelier; Wim Derave; Jan Gettemans

Gelsolin amyloidosis is an autosomal dominant incurable disease caused by a point mutation in the GSN gene (G654A/T), specifically affecting secreted plasma gelsolin. Incorrect folding of the mutant (D187N/Y) second gelsolin domain leads to a pathological proteolytic cascade. D187N/Y gelsolin is first cleaved by furin in the trans-Golgi network, generating a 68 kDa fragment (C68). Upon secretion, C68 is cleaved by MT1-MMP-like proteases in the extracellular matrix, releasing 8 kDa and 5 kDa amyloidogenic peptides which aggregate in multiple tissues and cause disease-associated symptoms. We developed nanobodies that recognize the C68 fragment, but not native wild type gelsolin, and used these as molecular chaperones to mitigate gelsolin amyloid buildup in a mouse model that recapitulates the proteolytic cascade. We identified gelsolin nanobodies that potently reduce C68 proteolysis by MT1-MMP in vitro. Converting these nanobodies into an albumin-binding format drastically increased their serum half-life in mice, rendering them suitable for intraperitoneal injection. A 12-week treatment schedule of heterozygote D187N gelsolin transgenic mice with recombinant bispecific gelsolin-albumin nanobody significantly decreased gelsolin buildup in the endomysium and concomitantly improved muscle contractile properties. These findings demonstrate that nanobodies may be of considerable value in the treatment of gelsolin amyloidosis and related diseases.


Nucleic Acids Research | 2014

A nanobody modulates the p53 transcriptional program without perturbing its functional architecture

Jonas Bethuyne; Steven De Gieter; Olivier Zwaenepoel; Abel Garcia-Pino; Kaat Durinck; Adriaan Verhelle; Gholamreza Hassanzadeh-Ghassabeh; Franki Speleman; Remy Loris; Jan Gettemans

The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds ‘structural’ mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations.


Scientific Reports | 2016

A new survivin tracer tracks, delocalizes and captures endogenous survivin at different subcellular locations and in distinct organelles

Els Beghein; Isabel Van Audenhove; Olivier Zwaenepoel; Adriaan Verhelle; Ariane De Ganck; Jan Gettemans

Survivin, the smallest member of the inhibitor of apoptosis protein family, plays a central role during mitosis and exerts a cytoprotective function. Survivin is highly expressed in most cancer types and contributes to multiple facets of carcinogenesis. The molecular mechanisms underlying its highly diverse functions need to be extensively explored, which is crucial for rational design of future personalized therapeutics. In this study, we have generated an alpaca survivin nanobody (SVVNb8) that binds with low nanomolar affinity to its target. When expressed as an intrabody in HeLa cells, SVVNb8 faithfully tracks survivin during different phases of mitosis without interfering with survivin function. Furthermore, coupling SVVNb8 with a subcellular delocalization tag efficiently redirects endogenous survivin towards the nucleus, the cytoplasm, peroxisomes and even to the intermembrane space of mitochondria where it presumably interacts with resident mitochondrial survivin. Based on our findings, we believe that SVVNb8 is an excellent instrument to further elucidate survivin biology and topography, and can serve as a model system to investigate mitochondrial and peroxisomal (survivin) protein import.


The FASEB Journal | 2012

Functional CSF-1 receptors are located at the nuclear envelope and activated via the p110δ isoform of PI 3-kinase

Olivier Zwaenepoel; Niki Tzenaki; Aikaterini Vergetaki; Antonis Makrigiannakis; Bart Vanhaesebroeck; Evangelia A. Papakonstanti

Colony stimulating factor‐1 (CSF‐1) and its receptor (CSF‐1R) are key regulators of macrophage biology, and their elevated expression in cancer cells has been linked to poor prognosis. CSF‐1Rs are thought to function at the plasma membrane. We show here that functional CSF‐1Rs are present at the nuclear envelope of various cell types, including primary macrophages, human cancer cell lines, and primary human carcinomas. In response to CSF‐1, added to intact cells or isolated nuclei, nucleus‐associated CSF‐1R became phosphorylated and triggered the phosphorylation of Akt and p27 inside the nucleus. Extracellularly added CSF‐1 was also found to colocalize with nucleus‐associated CSF‐1Rs. All these activities were found to depend selectively on the activity of the p110δ isoform of phosphoinositide 3‐kinase (PI3K). This finding was related to the p110δ‐dependent translocation of exogenous CSF‐1 to the nucleus‐associated CSF‐1Rs, correlating with a prominent role of p110δ in activation of the Rab5 GTPase, a key regulator of the endocytic trafficking. siRNA‐silencing of Rab5a phenocopied p110δ inactivation and nuclear CSF‐1 signaling. Our work demonstrates for the first time the presence of functional nucleus‐associated CSF‐1Rs, which are activated by extracellular CSF‐1 by a mechanism that involves p110δ and Rab5 activity. These findings may have important implications in cancer development.—Zwaenepoel, O., Tzenaki, N., Vergetaki A., Makrigiannakis, A., Vanhaesebroeck, B., Papakonstanti, E. A. Functional CSF‐1 receptors are located at the nuclear envelope and activated via the p110δ isoform of PI 3‐kinase. FASEB J. 26, 691–706 (2012). www.fasebj.org


Human Molecular Genetics | 2017

AAV9 delivered bispecific nanobody attenuates amyloid burden in the gelsolin amyloidosis mouse model

Adriaan Verhelle; Nisha Nair; Inge Everaert; Wouter Van Overbeke; Lynn Supply; Olivier Zwaenepoel; Cindy Peleman; Jo Van Dorpe; Tony Lahoutte; Nick Devoogdt; Wim Derave; Marinee Chuah; Thierry Vandendriessche; Jan Gettemans

Gelsolin amyloidosis is a dominantly inherited, incurable type of amyloidosis. A single point mutation in the gelsolin gene (G654A is most common) results in the loss of a Ca2+  binding site in the second gelsolin domain. Consequently, this domain partly unfolds and exposes an otherwise buried furin cleavage site at the surface. During secretion of mutant plasma gelsolin consecutive cleavage by furin and MT1-MMP results in the production of 8 and 5 kDa amyloidogenic peptides. Nanobodies that are able to (partly) inhibit furin or MT1-MMP proteolysis have previously been reported. In this study, the nanobodies have been combined into a single bispecific format able to simultaneously shield mutant plasma gelsolin from intracellular furin and extracellular MT1-MMP activity. We report the successful in vivo expression of this bispecific nanobody following adeno-associated virus serotype 9 gene therapy in gelsolin amyloidosis mice. Using SPECT/CT and immunohistochemistry, a reduction in gelsolin amyloid burden was detected which translated into improved muscle contractile properties. We conclude that a nanobody-based gene therapy using adeno-associated viruses shows great potential as a novel strategy in gelsolin amyloidosis and potentially other amyloid diseases.


PLOS ONE | 2017

VCA nanobodies target N-WASp to reduce invadopodium formation and functioning

Tim Hebbrecht; Isabel Van Audenhove; Olivier Zwaenepoel; Adriaan Verhelle; Jan Gettemans

Invasive cancer cells develop small actin-based protrusions called invadopodia, which perform a primordial role in metastasis and extracellular matrix remodelling. Neural Wiskott-Aldrich syndrome protein (N-WASp) is a scaffold protein which can directly bind to actin monomers and Arp2/3 and is a crucial player in the formation of an invadopodium precursor. Expression modulation has pointed to an important role for N-WASp in invadopodium formation but the role of its C-terminal VCA domain in this process remains unknown. In this study, we generated alpaca nanobodies against the N-WASp VCA domain and investigated if these nanobodies affect invadopodium formation. By using this approach, we were able to study functions of a selected functional/structural N-WASp protein domain in living cells, without requiring overexpression, dominant negative mutants or siRNAs which target the gene, and hence the entire protein. When expressed as intrabodies, the VCA nanobodies significantly reduced invadopodium formation in both MDA-MB-231 breast cancer and HNSCC61 head and neck squamous cancer cells. Furthermore, expression of distinct VCA Nbs (VCA Nb7 and VCA Nb14) in PC-3 prostate cancer cells resulted in reduced overall matrix degradation without affecting MMP9 secretion/activation or MT1-MMP localisation at invadopodial membranes. From these results, we conclude that we have generated nanobodies targeting N-WASp which reduce invadopodium formation and functioning, most likely via regulation of N-WASp—Arp2/3 complex interaction, indicating that this region of N-WASp plays an important role in these processes.

Collaboration


Dive into the Olivier Zwaenepoel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge