Olof Emanuelsson
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olof Emanuelsson.
Genes, Chromosomes and Cancer | 2013
Veronica Höiom; Daniel Edsgärd; Hildur Helgadottir; Hanna Eriksson; Charlotta All-Ericsson; Rainer Tuominen; Ivayla Ivanova; Joakim Lundeberg; Olof Emanuelsson; Johan Hansson
Melanoma of the eye is a rare and distinct subtype of melanoma, which only rarely are familial. However, cases of uveal melanoma (UM) have been found in families with mixed cancer syndromes. Here, we describe a comprehensive search for inherited genetic variation in a family with multiple cases of UM but no aggregation of other cancer diagnoses. The proband is a woman diagnosed with UM at 16 years who within 6 months developed liver metastases. We also identified two older paternal relatives of the proband who had died from UM. We performed exome sequencing of germline DNA from members of the affected family. Exome‐wide analysis identified a novel loss‐of‐function mutation in the BAP1 gene, previously suggested as a tumor suppressor. The mutation segregated with the UM phenotype in this family, and we detected a loss of the wild‐type allele in the UM tumor of the proband, strongly supporting a causative association with UM. Screening of BAP1 germline mutations in families predisposed for UM may be used to identify individuals at increased risk of disease. Such individuals may then be enrolled in preventive programs and regular screenings to facilitate early detection and thereby improve prognosis.
Plant Physiology | 2013
Daniel Uddenberg; Johan Reimegård; David E. Clapham; Curt Almqvist; Sara von Arnold; Olof Emanuelsson; Jens F. Sundström
Summary: Transcriptome analysis of an early cone-setting mutant identified candidate genes active during reproductive phase change in the conifer Picea abies. Conifers normally go through a long juvenile period, for Norway spruce (Picea abies) around 20 to 25 years, before developing male and female cones. We have grown plants from inbred crosses of a naturally occurring spruce mutant (acrocona). One-fourth of the segregating acrocona plants initiate cones already in their second growth cycle, suggesting control by a single locus. The early cone-setting properties of the acrocona mutant were utilized to identify candidate genes involved in vegetative-to-reproductive phase change in Norway spruce. Poly(A+) RNA samples from apical and basal shoots of cone-setting and non-cone-setting plants were subjected to high-throughput sequencing (RNA-seq). We assembled and investigated 33,383 expressed putative protein-coding acrocona transcripts. Eight transcripts were differentially expressed between selected sample pairs. One of these (Acr42124_1) was significantly up-regulated in apical shoot samples from cone-setting acrocona plants, and the encoded protein belongs to the MADS box gene family of transcription factors. Using quantitative real-time polymerase chain reaction with independently derived plant material, we confirmed that the MADS box gene is up-regulated in both needles and buds of cone-inducing shoots when reproductive identity is determined. Our results constitute important steps for the development of a rapid cycling model system that can be used to study gene function in conifers. In addition, our data suggest the involvement of a MADS box transcription factor in the vegetative-to-reproductive phase change in Norway spruce.
BMC Genomics | 2014
Benjamín Sigurgeirsson; Olof Emanuelsson; Joakim Lundeberg
BackgroundStrand specific RNA sequencing is rapidly replacing conventional cDNA sequencing as an approach for assessing information about the transcriptome. Alongside improved laboratory protocols the development of bioinformatical tools is steadily progressing. In the current procedure the Illumina TruSeq library preparation kit is used, along with additional reagents, to make stranded libraries in an automated fashion which are then sequenced on Illumina HiSeq 2000. By the use of freely available bioinformatical tools we show, through quality metrics, that the protocol is robust and reproducible. We further highlight the practicality of strand specific libraries by comparing expression of strand specific libraries to non-stranded libraries, by looking at known antisense transcription of pseudogenes and by identifying novel transcription. Furthermore, two ribosomal depletion kits, RiboMinus and RiboZero, are compared and two sequence aligners, Tophat2 and STAR, are also compared.ResultsThe, non-stranded, Illumina TruSeq kit can be adapted to generate strand specific libraries and can be used to access detailed information on the transcriptome. The RiboZero kit is very effective in removing ribosomal RNA from total RNA and the STAR aligner produces high mapping yield in a short time. Strand specific data gives more detailed and correct results than does non-stranded data as we show when estimating expression values and in assembling transcripts. Even well annotated genomes need improvements and corrections which can be achieved using strand specific data.ConclusionsResearchers in the field should strive to use strand specific data; it allows for more confidence in the data analysis and is less likely to lead to false conclusions. If faced with analysing non-stranded data, researchers should be well aware of the caveats of that approach.
PLOS ONE | 2010
Daniel Klevebring; Magnus K. Bjursell; Olof Emanuelsson; Joakim Lundeberg
Several recent studies have indicated that transcription is pervasive in regions outside of protein coding genes and that short antisense transcripts can originate from the promoter and terminator regions of genes. Here we investigate transcription of fragments longer than 200 nucleotides, focusing on antisense transcription for known protein coding genes and intergenic transcription. We find that roughly 12% to 16% of all reads that originate from promoter and terminator regions, respectively, map antisense to the gene in question. Furthermore, we detect a high number of novel transcriptionally active regions (TARs) that are generally expressed at a lower level than protein coding genes. We find that the correlation between RNA-seq data and microarray data is dependent on the gene length, with longer genes showing a better correlation. We detect high antisense transcriptional activity from promoter, terminator and intron regions of protein-coding genes and identify a vast number of previously unidentified TARs, including putative novel EGFR transcripts. This shows that in-depth analysis of the transcriptome using RNA-seq is a valuable tool for understanding complex transcriptional events. Furthermore, the development of new algorithms for estimation of gene expression from RNA-seq data is necessary to minimize length bias.
PLOS ONE | 2012
Maria Jesus Iglesias; Sarah-Jayne Reilly; Olof Emanuelsson; Bengt Sennblad; Mohammad Pirmoradian Najafabadi; Lasse Folkersen; Anders Mälarstig; Jens Lagergren; Per Eriksson; Anders Hamsten; Jacob Odeberg
Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS). To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches - gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac) and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII), which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF), was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines), was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/−LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40%) was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at the chromatin level for specific genes and this study highlights the level of fine-tuning that occurs in the immune response.
BMC Genomics | 2010
Daniel Klevebring; Linn Fagerberg; Emma Lundberg; Olof Emanuelsson; Mathias Uhlén; Joakim Lundeberg
BackgroundAn interesting field of research in genomics and proteomics is to compare the overlap between the transcriptome and the proteome. Recently, the tools to analyse gene and protein expression on a whole-genome scale have been improved, including the availability of the new generation sequencing instruments and high-throughput antibody-based methods to analyze the presence and localization of proteins. In this study, we used massive transcriptome sequencing (RNA-seq) to investigate the transcriptome of a human osteosarcoma cell line and compared the expression levels with in situ protein data obtained in-situ from antibody-based immunohistochemistry (IHC) and immunofluorescence microscopy (IF).ResultsA large-scale analysis based on 2749 genes was performed, corresponding to approximately 13% of the protein coding genes in the human genome. We found the presence of both RNA and proteins to a large fraction of the analyzed genes with 60% of the analyzed human genes detected by all three methods. Only 34 genes (1.2%) were not detected on the transcriptional or protein level with any method. Our data suggest that the majority of the human genes are expressed at detectable transcript or protein levels in this cell line. Since the reliability of antibodies depends on possible cross-reactivity, we compared the RNA and protein data using antibodies with different reliability scores based on various criteria, including Western blot analysis. Gene products detected in all three platforms generally have good antibody validation scores, while those detected only by antibodies, but not by RNA sequencing, generally consist of more low-scoring antibodies.ConclusionThis suggests that some antibodies are staining the cells in an unspecific manner, and that assessment of transcript presence by RNA-seq can provide guidance for validation of the corresponding antibodies.
Methods in Enzymology | 2006
Thomas E. Royce; Joel Rozowsky; Nicholas M. Luscombe; Olof Emanuelsson; Haiyuan Yu; Xiaowei Zhu; Michael Snyder; Mark Gerstein
A credit to microarray technology is its broad application. Two experiments--the tiling microarray experiment and the protein microarray experiment--are exemplars of the versatility of the microarrays. With the technologys expanding list of uses, the corresponding bioinformatics must evolve in step. There currently exists a rich literature developing statistical techniques for analyzing traditional gene-centric DNA microarrays, so the first challenge in analyzing the advanced technologies is to identify which of the existing statistical protocols are relevant and where and when revised methods are needed. A second challenge is making these often very technical ideas accessible to the broader microarray community. The aim of this chapter is to present some of the most widely used statistical techniques for normalizing and scoring traditional microarray data and indicate their potential utility for analyzing the newer protein and tiling microarray experiments. In so doing, we will assume little or no prior training in statistics of the reader. Areas covered include background correction, intensity normalization, spatial normalization, and the testing of statistical significance.
Scientific Reports | 2016
Daniel Edsgärd; Maria Jesus Iglesias; Sarah-Jayne Reilly; Anders Hamsten; Per Tornvall; Jacob Odeberg; Olof Emanuelsson
Allele-specific expression (ASE) is the imbalance in transcription between maternal and paternal alleles at a locus and can be probed in single individuals using massively parallel DNA sequencing technology. Assessing ASE within a single sample provides a static picture of the ASE, but the magnitude of ASE for a given transcript may vary between different biological conditions in an individual. Such condition-dependent ASE could indicate a genetic variation with a functional role in the phenotypic difference. We investigated ASE through RNA-sequencing of primary white blood cells from eight human individuals before and after the controlled induction of an inflammatory response, and detected condition-dependent and static ASE at 211 and 13021 variants, respectively. We developed a method, GeneiASE, to detect genes exhibiting static or condition-dependent ASE in single individuals. GeneiASE performed consistently over a range of read depths and ASE effect sizes, and did not require phasing of variants to estimate haplotypes. We observed condition-dependent ASE related to the inflammatory response in 19 genes, and static ASE in 1389 genes. Allele-specific expression was confirmed by validation of variants through real-time quantitative RT-PCR, with RNA-seq and RT-PCR ASE effect-size correlations r = 0.67 and r = 0.94 for static and condition-dependent ASE, respectively.
PLOS ONE | 2014
Yajing Song; Christian G. Giske; Patrik Gille-Johnson; Olof Emanuelsson; Joakim Lundeberg; Péter Gyarmati
Sepsis is a severe medical condition characterized by a systemic inflammatory response of the body caused by pathogenic microorganisms in the bloodstream. Blood or plasma is typically used for diagnosis, both containing large amount of human DNA, greatly exceeding the DNA of microbial origin. In order to enrich bacterial DNA, we applied the C0t effect to reduce human DNA background: a model system was set up with human and Escherichia coli (E. coli) DNA to mimic the conditions of bloodstream infections; and this system was adapted to plasma and blood samples from septic patients. As a consequence of the C0t effect, abundant DNA hybridizes faster than rare DNA. Following denaturation and re-hybridization, the amount of abundant DNA can be decreased with the application of double strand specific nucleases, leaving the non-hybridized rare DNA intact. Our experiments show that human DNA concentration can be reduced approximately 100,000-fold without affecting the E. coli DNA concentration in a model system with similarly sized amplicons. With clinical samples, the human DNA background was decreased 100-fold, as bacterial genomes are approximately 1,000-fold smaller compared to the human genome. According to our results, background suppression can be a valuable tool to enrich rare DNA in clinical samples where a high amount of background DNA can be found.
Nucleic Acids Research | 2014
Stephan Wiegand; Doreen Meier; Carsten Seehafer; Marek Malicki; Patrick Hofmann; Anika Schmith; Thomas Winckler; Balint Földesi; Benjamin Boesler; Wolfgang Nellen; Johan Reimegård; Max Käller; Jimmie Hällman; Olof Emanuelsson; Lotta Avesson; Fredrik Söderbom; Christian Hammann
Dictyostelium intermediate repeat sequence 1 (DIRS-1) is the founding member of a poorly characterized class of retrotransposable elements that contain inverse long terminal repeats and tyrosine recombinase instead of DDE-type integrase enzymes. In Dictyostelium discoideum, DIRS-1 forms clusters that adopt the function of centromeres, rendering tight retrotransposition control critical to maintaining chromosome integrity. We report that in deletion strains of the RNA-dependent RNA polymerase RrpC, full-length and shorter DIRS-1 messenger RNAs are strongly enriched. Shorter versions of a hitherto unknown long non-coding RNA in DIRS-1 antisense orientation are also enriched in rrpC– strains. Concurrent with the accumulation of long transcripts, the vast majority of small (21 mer) DIRS-1 RNAs vanish in rrpC– strains. RNASeq reveals an asymmetric distribution of the DIRS-1 small RNAs, both along DIRS-1 and with respect to sense and antisense orientation. We show that RrpC is required for post-transcriptional DIRS-1 silencing and also for spreading of RNA silencing signals. Finally, DIRS-1 mis-regulation in the absence of RrpC leads to retrotransposon mobilization. In summary, our data reveal RrpC as a key player in the silencing of centromeric retrotransposon DIRS-1. RrpC acts at the post-transcriptional level and is involved in spreading of RNA silencing signals, both in the 5′ and 3′ directions.