Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olof Rådmark is active.

Publication


Featured researches published by Olof Rådmark.


Nature | 2003

The nuclear RNase III Drosha initiates microRNA processing

Yoontae Lee; Chiyoung Ahn; Jinju Han; Hyounjeong Choi; Jaekwang Kim; Jeongbin Yim; Junho Lee; Patrick Provost; Olof Rådmark; Sunyoung Kim; V. Narry Kim

Hundreds of small RNAs of ∼22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of ∼70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.


The EMBO Journal | 2002

Ribonuclease activity and RNA binding of recombinant human Dicer

Patrick Provost; David Dishart; Johanne Doucet; David Frendewey; Bengt Samuelsson; Olof Rådmark

RNA silencing phenomena, known as post‐transcriptional gene silencing in plants, quelling in fungi, and RNA interference (RNAi) in animals, are mediated by double‐stranded RNA (dsRNA) and mechanistically intersect at the ribonuclease Dicer. Here, we report cloning and expression of the 218 kDa human Dicer, and characterization of its ribonuclease activity and dsRNA‐binding properties. The recombinant enzyme generated ∼21–23 nucleotide products from dsRNA. Processing of the microRNA let‐7 precursor by Dicer produced an apparently mature let‐7 RNA. Mg2+ was required for dsRNase activity, but not for dsRNA binding, thereby uncoupling these reaction steps. ATP was dispensable for dsRNase activity in vitro. The Dicer·dsRNA complex formed at high KCl concentrations was catalytically inactive, suggesting that ionic interactions are involved in dsRNA cleavage. The putative dsRNA‐binding domain located at the C‐terminus of Dicer was demonstrated to bind dsRNA in vitro. Human Dicer expressed in mammalian cells colocalized with calreticulin, a resident protein of the endoplasmic reticulum. Availability of the recombinant Dicer protein will help improve our understanding of RNA silencing and other Dicer‐related processes.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis

Rainer Spanbroek; Rolf Gräbner; Katharina Lötzer; Markus Hildner; Anja Urbach; Katharina Rühling; Michael P. W. Moos; Brigitte Kaiser; Tina U. Cohnert; Thorsten Wahlers; Arthur W. Zieske; Gabriele Plenz; Horst Robenek; Peter Salbach; Hartmut Kühn; Olof Rådmark; Bengt Samuelsson; Andreas J.R. Habenicht

Oxidation products of low-density lipoproteins have been suggested to promote inflammation during atherogenesis, and reticulocyte-type 15-lipoxygenase has been implicated to mediate this oxidation. In addition, the 5-lipoxygenase cascade leads to formation of leukotrienes, which exhibit strong proinflammatory activities in cardiovascular tissues. Here, we studied both lipoxygenase pathways in human atherosclerosis. The 5-lipoxygenase pathway was abundantly expressed in arterial walls of patients afflicted with various lesion stages of atherosclerosis of the aorta and of coronary and carotid arteries. 5-lipoxygenase localized to macrophages, dendritic cells, foam cells, mast cells, and neutrophilic granulocytes, and the number of 5-lipoxygenase expressing cells markedly increased in advanced lesions. By contrast, reticulocyte-type 15-lipoxygenase was expressed at levels that were several orders of magnitude lower than 5-lipoxygenase in both normal and diseased arteries, and its expression could not be related to lesion pathology. Our data support a model of atherogenesis in which 5-lipoxygenase cascade-dependent inflammatory circuits consisting of several leukocyte lineages and arterial wall cells evolve within the blood vessel wall during critical stages of lesion development. They raise the possibility that antileukotriene drugs may be an effective treatment regimen in late-stage disease.


Cell Metabolism | 2008

Glutathione Peroxidase 4 Senses and Translates Oxidative Stress into 12/15-Lipoxygenase Dependent- and AIF-Mediated Cell Death

Alexander Seiler; Manuela Schneider; Heidi Förster; Stephan Roth; Eva K. Wirth; Carsten Culmsee; Nikolaus Plesnila; Elisabeth Kremmer; Olof Rådmark; Wolfgang Wurst; Georg W. Bornkamm; Ulrich Schweizer; Marcus Conrad

Oxidative stress in conjunction with glutathione depletion has been linked with various acute and chronic degenerative disorders, yet the molecular mechanisms have remained unclear. In contrast to the belief that oxygen radicals are detrimental to cells and tissues by unspecific oxidation of essential biomolecules, we now demonstrate that oxidative stress is sensed and transduced by glutathione peroxidase 4 (GPx4) into a-yet-unrecognized cell-death pathway. Inducible GPx4 inactivation in mice and cells revealed 12/15-lipoxygenase-derived lipid peroxidation as specific downstream event, triggering apoptosis-inducing factor (AIF)-mediated cell death. Cell death could be entirely prevented either by alpha-tocopherol (alpha-Toc), 12/15-lipoxygenase inhibitors, or siRNA-mediated AIF silencing. Accordingly, 12/15-lipoxygenase-deficient cells were highly resistant to glutathione depletion. Neuron-specific GPx4 depletion caused neurodegeneration in vivo and ex vivo, highlighting the importance of this pathway in neuronal cells. Since oxidative stress is common in the etiology of many human disorders, the identified pathway reveals promising targets for future therapies.


Nature Cell Biology | 2014

Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice

José Pedro Friedmann Angeli; Manuela Schneider; Bettina Proneth; Yulia Y. Tyurina; Vladimir A. Tyurin; Victoria Jayne Hammond; Nadja Herbach; Michaela Aichler; Axel Walch; Elke Eggenhofer; Devaraj Basavarajappa; Olof Rådmark; Sho Kobayashi; Tobias Seibt; Heike Beck; Frauke Neff; Irene Esposito; Rüdiger Wanke; Heidi Förster; Olena Yefremova; Georg W. Bornkamm; Edward K. Geissler; Stephen B. Thomas; Brent R. Stockwell; Valerie B. O’Donnell; Valerian E. Kagan; Joel A. Schick; Marcus Conrad

Ferroptosis is a non-apoptotic form of cell death induced by small molecules in specific tumour types, and in engineered cells overexpressing oncogenic RAS. Yet, its relevance in non-transformed cells and tissues is unexplored and remains enigmatic. Here, we provide direct genetic evidence that the knockout of glutathione peroxidase 4 (Gpx4) causes cell death in a pathologically relevant form of ferroptosis. Using inducible Gpx4−/− mice, we elucidate an essential role for the glutathione/Gpx4 axis in preventing lipid-oxidation-induced acute renal failure and associated death. We furthermore systematically evaluated a library of small molecules for possible ferroptosis inhibitors, leading to the discovery of a potent spiroquinoxalinamine derivative called Liproxstatin-1, which is able to suppress ferroptosis in cells, in Gpx4−/− mice, and in a pre-clinical model of ischaemia/reperfusion-induced hepatic damage. In sum, we demonstrate that ferroptosis is a pervasive and dynamic form of cell death, which, when impeded, promises substantial cytoprotection.


Biochemical and Biophysical Research Communications | 1980

Leukotriene a: Stereochemistry and enzymatic conversion to leukotriene B

Olof Rådmark; Curt Malmsten; Bengt Samuelsson; David A. Clark; Giichi Goto; Anthony Marfat; E. J. Corey

Abstract Leukotriene A was assigned the structure 5(S)- trans -5,6-oxido-7,9- trans -11,14- cis -eicosatetraenoic acid by the enzymatic conversion of a synthetic product of known stereochemistry into the naturally occurring isomer of 5(S),12(R)-dihydroxy-6,8,10,14-eicosatetraenoic acid in human polymorphonuclear leukocytes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

ERK-mediated regulation of leukotriene biosynthesis by androgens: A molecular basis for gender differences in inflammation and asthma

Carlo Pergola; Gabriele Dodt; Antonietta Rossi; Eva Neunhoeffer; Barbara Lawrenz; Hinnak Northoff; Bengt Samuelsson; Olof Rådmark; Lidia Sautebin; Oliver Werz

5-Lipoxygenase initiates the biosynthesis of leukotrienes, lipid mediators involved in normal host defense and in inflammatory and allergic disorders. Despite an obvious gender bias in leukotriene-related diseases (e.g., asthma), gender aspects have been neglected in studies on leukotrienes and 5-lipoxygenase. Here, we show that leukotriene formation in stimulated whole blood or neutrophils from males is substantially lower compared with females, accompanied by changed 5-lipoxygenase trafficking. This is due to gender-specific differential activation of extracellular signal-regulated kinases (ERKs). The differences are directly related to variant male/female testosterone plus 5α-dihydrotestosterone levels, and addition of 5α-dihydrotestosterone to female blood or neutrophils reduced the high (female) LT biosynthesis capacity to low (male) levels. In conclusion, regulation of ERKs and leukotriene formation by androgens constitutes a molecular basis for gender differences in the inflammatory response, and in inflammatory diseases such as asthma.


The FASEB Journal | 2002

Extracellular signal-regulated kinases phosphorylate 5-lipoxygenase and stimulate 5-lipoxygenase product formation in leukocytes

Oliver Werz; Eva Bürkert; Lutz Fischer; Dagmar Szellas; David Dishart; Bengt Samuelsson; Olof Rådmark; Dieter Steinhilber

5‐Lipoxygenase (5‐LO) is the key enzyme in the biosynthesis of proinflammatory leukotrienes. Here, we demonstrate that extracellular signal‐regulated kinases (ERKs) can phosphorylate 5‐LO in vitro. Efficient phosphorylation required the presence of unsaturated fatty acids and was abolished when Ser‐663 was mutated to alanine. In intact HeLa cells stimulated with arachidonic acid (AA), impaired 5‐LO product formation was evident in cells expressing the S663A‐5‐LO mutant compared with cells expressing wild‐type 5‐LO. For Mono Mac 6 cells, priming with phorbol myristate acetate (PMA) before stimulation with ionophore was required for ERK1/2 activation and efficient 5‐LO phosphorylation, in parallel with substantial AA release and 5‐LO product formation. Inhibition of PKC by GF109203x or MEK1/2 by U0126 (or PD98059) abolished the 5‐LO up‐regulation effects of PMA. In contrast, these inhibitors failed to suppress 5‐LO product formation induced by stimuli such as AA plus ionophore, which apparently do not involve the ERK1/2 pathway. Based on inhibitor studies, ERKs are also involved in AA‐stimulated 5‐LO product formation in PMNL, whereas a role for ERKs is not apparent in 5‐LO activation induced by ionophore or cell stress. Finally, the data suggest that ERKs and p38 MAPK‐regulated MAPKAPKs can act in conjunction to stimulate 5‐LO by phosphorylation.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Dicer is required for chromosome segregation and gene silencing in fission yeast cells

Patrick Provost; Rebecca A. Silverstein; David Dishart; Julian Walfridsson; Ingela Djupedal; Barbara Kniola; Anthony P. H. Wright; Bengt Samuelsson; Olof Rådmark; Karl Ekwall

RNA interference is a form of gene silencing in which the nuclease Dicer cleaves double-stranded RNA into small interfering RNAs. Here we report a role for Dicer in chromosome segregation of fission yeast. Deletion of the Dicer (dcr1+) gene caused slow growth, sensitivity to thiabendazole, lagging chromosomes during anaphase, and abrogated silencing of centromeric repeats. As Dicer in other species, Dcr1p degraded double-stranded RNA into ≈23 nucleotide fragments in vitro, and dcr1Δ cells were partially rescued by expression of human Dicer, indicating evolutionarily conserved functions. Expression profiling demonstrated that dcr1+ was required for silencing of two genes containing a conserved motif.


Proceedings of the National Academy of Sciences of the United States of America | 2001

IL-4 determines eicosanoid formation in dendritic cells by down-regulation of 5-lipoxygenase and up-regulation of 15-lipoxygenase 1 expression

Rainer Spanbroek; Markus Hildner; André Köhler; Angelika Müller; Felix Zintl; Hartmut Kühn; Olof Rådmark; Bengt Samuelsson; Andreas J. R. Habenicht

Dendritic cell (DC) differentiation from human CD34+ hematopoietic progenitor cells (HPCs) can be triggered in vitro by a combination of cytokines consisting of stem cell factor, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor α. The immune response regulatory cytokines, IL-4 and IL-13, promote DC maturation from HPCs, induce monocyte-DC transdifferentiation, and selectively up-regulate 15-lipoxygenase 1 (15-LO-1) in blood monocytes. To gain more insight into cytokine-regulated eicosanoid production in DCs we studied the effects of IL-4/IL-13 on LO expression during DC differentiation. In the absence of IL-4, DCs that had been generated from CD34+ HPCs in response to stem cell factor/granulocyte-macrophage colonystimulating factor/tumor necrosis factor α expressed high levels of 5-LO and 5-LO activating protein. However, a small subpopulation of eosinophil peroxidase+ (EOS-PX) cells significantly expressed 15-LO-1. Addition of IL-4 to differentiating DCs led to a marked and selective down-regulation of 5-LO but not of 5-LO activating protein in DCs and in EOS-PX+ cells and, when added at the onset of DC differentiation, also prevented 5-LO up-regulation. Similar effects were observed during IL-4- or IL-13-dependent monocyte-DC transdifferentiation. Down-regulation of 5-LO was accompanied by up-regulation of 15-LO-1, yielding 15-LO-1+ 5-LO-deficient DCs. However, transforming growth factor β1 counteracted the IL-4-dependent inhibition of 5-LO but only minimally affected 15-LO-1 up-regulation. Thus, transforming growth factor β1 plus IL-4 yielded large mature DCs that coexpress both LOs. Localization of 5-LO in the nucleus and of 15-LO-1 in the cytosol was maintained at all cytokine combinations in all DC phenotypes and in EOS-PX+ cells. In the absence of IL-4, major eicosanoids of CD34+-derived DCs were 5S-hydroxyeicosatetraenoic acid (5S-HETE) and leukotriene B4, whereas the major eicosanoids of IL-4-treated DCs were 15S-HETE and 5S-15S-diHETE. These actions of IL-4/IL-13 reveal a paradigm of eicosanoid formation consisting of the inhibition of one and the stimulation of another LO in a single leukocyte lineage.

Collaboration


Dive into the Olof Rådmark's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Steinhilber

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Oliver Werz

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge