Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olof Solin is active.

Publication


Featured researches published by Olof Solin.


The Lancet | 1995

Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients

Jarmo Hietala; Erkka Syvälahti; Mikko Kuoppamäki; M. Haaparanta; U. Ruotsalainen; K. Vuorio; V. Räkköläinen; J. Bergman; Olof Solin; O. Kirvelä; Raimo K. R. Salokangas

Presynaptic dopamine function (6-[18F]-fluorodopa uptake) in the brains of seven neuroleptic-naive first-admission schizophrenic patients and eight healthy controls was studied with positron emission tomography. The fluorodopa influx constant (Ki) in putamen was higher in the patients than in controls (average mean: 0.0149 vs 0.0129, p = 0.034). The changes in caudate were smaller but significantly lateralised to the left caudate. There was one catatonic schizophrenic patient in our sample. This patient had lower striatal Ki than any control. Alterations in striatal presynaptic dopamine function may constitute a part of disrupted neural circuits that predispose to schizophrenic psychosis.


Journal of Clinical Investigation | 1992

Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo.

Pirjo Nuutila; Veikko A. Koivisto; Juhani Knuuti; Ulla Ruotsalainen; Mika Teräs; Merja Haaparanta; J. Bergman; Olof Solin; Liisa-Maria Voipio-Pulkki; Uno Wegelius

Positron emission tomography permits noninvasive measurement of regional glucose uptake in vivo in humans. We employed this technique to determine the effect of FFA on glucose uptake in leg, arm, and heart muscles. Six normal men were studied twice under euglycemic hyperinsulinemic (serum insulin approximately 500 pmol/liter) conditions, once during elevation of serum FFA by infusions of heparin and Intralipid (serum FFA 2.0 +/- 0.4 mmol/liter), and once during infusion of saline (serum FFA 0.1 +/- 0.01 mmol/liter). Regional glucose uptake rates were measured using positron emission tomography-derived 18F-fluoro-2-deoxy-D-glucose kinetics and the three-compartment model described by Sokoloff (Sokoloff, L., M. Reivich, C. Kennedy, M. C. Des Rosiers, C. S. Patlak, K. D. Pettigrew, O. Sakurada, and M. Shinohara. 1977. J. Neurochem. 28: 897-916). Elevation of plasma FFA decreased whole body glucose uptake by 31 +/- 2% (1,960 +/- 130 vs. 2,860 +/- 250 mumol/min, P less than 0.01, FFA vs. saline study). This decrease was due to inhibition of glucose uptake in the heart by 30 +/- 8% (150 +/- 33 vs. 200 +/- 28 mumol/min, P less than 0.02), and in skeletal muscles; both when measured in femoral (1,594 +/- 261 vs. 2,272 +/- 328 mumol/min, 25 +/- 13%) and arm muscles (1,617 +/- 411 to 2,305 +/- 517 mumol/min, P less than 0.02, 31 +/- 6%). Whole body glucose uptake correlated with glucose uptake in femoral (r = 0.75, P less than 0.005), and arm muscles (r = 0.69, P less than 0.05) but not with glucose uptake in the heart (r = 0.04, NS). These data demonstrate that the glucose-FFA cycle operates in vivo in both heart and skeletal muscles in humans.


Schizophrenia Research | 1999

Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia

Jarmo Hietala; Erkka Syvälahti; Harry Vilkman; Klaus Vuorio; Viljo Räkköläinen; J. Bergman; Merja Haaparanta; Olof Solin; Mikko Kuoppamäki; Esa Eronen; Ulla Ruotsalainen; Raimo K. R. Salokangas

We have previously reported aberrations in the striatal presynaptic dopamine function in neuroleptic-naive schizophrenic patients compared to healthy controls (Hietala, J., Syvälahti, E., Vuorio, K. et al., 1995. Lancet 346, 1130-1131). In this extended study we explore whether the altered presynaptic dopamine function correlates with the clinical symptomatology in schizophrenia. Striatal dopamine synthesis capacity (6-[18F]fluorodopa (FDOPA) uptake, Ki values) was studied with positron emission tomography in 10 neuroleptic-naive schizophrenic patients and 13 healthy controls. The clinical symptomatology was characterized with the Positive and Negative Symptom Scale (PANSS). The patients had an increased FDOPA uptake in striatum and lacked the asymmetry in caudate FDOPA uptake (p = 0.0005), confirming our earlier results. Left striatal FDOPA uptake (Ki) values correlated negatively with depressive symptoms in a highly significant manner. On the other hand, paranoid symptomatology correlated positively with right putamen FDOPA uptake at a trend level (rho = 0.73, p < 0.02). The lack of asymmetry in caudate Ki values did not associate with any dimension of psychopathology. The major finding in this study is that depressive symptoms in neuroleptic-naive first-admission schizophrenia are associated with low presynaptic dopamine function. This link appears to be hemisphere-related and may have drug-treatment implications, e.g., in prediction of response to D2 receptor blocking antipsychotic drugs. A possible connection between paranoid symptomatology and subcortical hyperdopaminergia is suggested, but this remains to be further verified.


Movement Disorders | 2001

Rate of progression in Parkinson's disease: A 6-[18F]fluoro-L-dopa PET study

Elina Nurmi; Hanna M. Ruottinen; Jörgen Bergman; Merja Haaparanta; Olof Solin; Pirkko Sonninen; Juha O. Rinne

The aim of this study was to investigate the rate of progression in Parkinsons disease (PD) with 6‐[18F]fluoro‐L‐dopa (FDOPA) positron emission tomography (PET). We investigated 21 patients with PD and eight healthy controls. Ten of the patients were de novo at the time of the first PET scan and antiparkinsonian medication was started thereafter, with a favourable response. A FDOPA PET scan was carried out twice at an approximately 5‐year interval. The regions of interest were drawn on individual magnetic resonance imaging (MRI) images, matched with the PET images.


Diabetes | 1995

Gender and Insulin Sensitivity in the Heart and in Skeletal Muscles: Studies Using Positron Emission Tomography

Pirjo Nuutila; M. J. Knuuti; Maija Mäki; Hanna Laine; Ulla Ruotsalainen; Mika Teräs; Merja Haaparanta; Olof Solin; Hannele Yki-Järvinen

Good insulin sensitivity is independently associated with a low risk for coronary heart disease, but it is unclear whether this risk factor differs between men and women. We compared insulin sensitivity of glucose uptake directly in muscle and heart tissues between healthy women (age 29 ± 2 years, body mass index [BMI] 22 ± 1 kg/m2, VO2max 39 ± 4 ml · kg−1 · min−1) and men matched for age (31 ± 2 years), BMI (23 ± 1 kg/m2), and VO2max (44 ± 3 ml · kg−1 · min−1) using [18F]fluoro-2-deoxy-D-glucose and positron emission tomography under hyperinsulinemic (insulin infusion rate 1 mU · kg−1 · min−1) normoglycemic conditions. Whole body insulin sensitivity was 41% greater in women (52 ± 6 μmol · kg body wt−1 · min−1) than in men (37 ± 3 μmol · kg body wt−1 · min−1, P < 0.05). This difference was explained by a 47% greater rate of glucose uptake by femoral muscles (113 ± 10 vs. 77 ± 7 μmol · kg muscle−1 · min−1, women vs. men, P < 0.01). Insulin-stimulated glucose uptake rates in the heart were similar in women (738 ± 58) and men (749 ± 62 μmol · kg muscle−1 · min−1). Femoral muscle insulin sensitivity was closely correlated with whole body insulin sensitivity (r = 0.84, P < 0.001). Gender and VO2max together explained 68% of the variation in femoral muscle glucose uptake. We conclude that women are more sensitive to insulin than equally fit men because of enhanced muscle but not heart insulin sensitivity.


Circulation | 1996

Glucose Uptake in the Chronically Dysfunctional but Viable Myocardium

Maija Mäki; Matti Luotolahti; Pirjo Nuutila; Hidehiro Iida; Liisa-Maria Voipio-Pulkki; Ulla Ruotsalainen; Merja Haaparanta; Olof Solin; Jaakko Hartiala; Risto Härkönen; Juhani Knuuti

BACKGROUND The regulation of glucose uptake in the dysfunctional but viable myocardium has not been studied previously in humans. METHODS AND RESULTS Seven patients with an occluded major coronary artery but no previous infarction were studied twice with 2-[(18)F]fluoro-2-deoxy-D-glucose positron emission tomography, once in the fasting state and once during hyperinsulinemic euglycemic clamping. Myocardial blood flow was measured with [(15)O]H2O. The myocardial region beyond an occluded artery that showed stable wall-motion abnormality represented chronically dysfunctional but viable tissue. Six of the patients were later revascularized, and wall-motion recovery was detected in the corresponding regions, which confirmed viability. A slightly reduced myocardial blood flow was detected in the dysfunctional than in the remote myocardial regions (0.81 +/- 0.27 versus 1.02 +/- 0.23 mL x g(-1) x min(-1),P=.036). In the fasting state, glucose uptake was slightly increased in the dysfunctional regions compared with normal myocardium (15 +/- 10 versus 11 +/- 10 micromol/100 g per minute, P=.038). During insulin clamping, a striking increase in glucose uptake by insulin was obtained in both the dysfunctional and the normal regions (72 +/- 22 and 79 +/- 21 micromol/100 g per minute, respectively; P<.001, fasting versus clamping). CONCLUSIONS Contrary to previous suggestions, glucose uptake can be increased strikingly by insulin in chronically dysfunctional but viable myocardium. This demonstrates that insulin control over glucose uptake is preserved in the dysfunctional myocardium and provides a rational basis for metabolic intervention.


The Journal of Nuclear Medicine | 2008

18F-EF5: A New PET Tracer for Imaging Hypoxia in Head and Neck Cancer

Gaber Komar; Marko Seppänen; Olli Eskola; Paula Lindholm; Tove Grönroos; Sarita Forsback; Hannu Sipilä; Sydney M. Evans; Olof Solin; Heikki Minn

The aim of this study was to evaluate 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide (EF5) labeled with 18F-fluorine to image hypoxia in patients with squamous cell carcinoma of the head and neck (HNSCC). Methods: Fifteen patients with HNSCC were studied. Measurement of tumor blood flow was followed by an 18F-EF5 PET/CT scan. On a separate day, 18F-FDG PET/CT was performed to determine the metabolically active tumor volume. In 6 patients, dynamic 18F-EF5 images of the head and neck area were acquired, followed by static images acquired at 1, 2, and 3 h after injection. In the remaining 9 patients, only static images were obtained. 18F-EF5 uptake in tumors was compared with that in neck muscle, and the 18F-EF5 findings were correlated with the 18F-FDG PET/CT studies. Results: A total of 13 primary tumors and 5 lymph node metastases were evaluated for their uptake of 18F-EF5. The median tumor-to-muscle 18F-EF5 uptake ratio (T/M) increased over time and was 1.38 (range, 1.1–3.2) 3 h after tracer injection. The median blood flow in tumors was 36.7 mL/100 g/min (range, 23.3–78.6 mL/100 g/min). Voxel-by-voxel analysis of coregistered blood flow and 18F-EF5 images revealed a distinct pattern, resulting in a T/M of 1.5 at 3 h to be chosen as a cutoff for clinically significant hypoxia. Fourteen of 18 tumors (78%) had subvolumes within the metabolically active tumor volumes with T/M greater than or equal to 1.5. Conclusion: On the basis of these data, the potential of 18F-EF5 to detect hypoxia in HNSCC is encouraging. Further development of 18F-EF5 for eventual targeting of antihypoxia therapies is warranted.


Neuroscience Letters | 2001

Positron emission tomography shows that impaired frontal lobe functioning in Parkinson’s disease is related to dopaminergic hypofunction in the caudate nucleus

Anna Brück; Raija Portin; Arja Lindell; Arto Laihinen; J. Bergman; M. Haaparanta; Olof Solin; Juha O. Rinne

We examined the relation between the dopaminergic function and the cognitive performance of patients with Parkinsons disease (PD). The subject sample consisted of ten patients in the early course of PD and with no previous antiparkinsonian medication. The dopaminergic function of the caudate nucleus and the putamen was studied with [(18)F]fluorodopa positron emission tomography, and the cognitive performance with a comprehensive battery of neuropsychological tests including tests sensitive to frontal lobe function. The decreased [(18)F]fluorodopa uptake in the right caudate nucleus was found to be related to slow processing time, measured as the difference between the incongruent and the congruent subtests of the Stroop Test (r=-0.85, P=0.002), a similar trend was seen in the left caudate (r=-0.60, P=0.07). Similar correlation was not detected in the putamen. The present findings provide evidence that the decreased dopaminergic function in the right caudate nucleus is related to the impaired performance in tests sensitive to frontal lobe function in patients at an early stage of PD and with no antiparkinsonian medication.


Biological Psychiatry | 2002

Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects

Aki Laakso; Harry Vilkman; J.örgen Bergman; Merja Haaparanta; Olof Solin; Erkka Syvälahti; Raimo K. R. Salokangas; Jarmo Hietala

BACKGROUND There are sex differences in the clinical features of several neuropsychiatric illnesses associated with dopamine dysfunction. The effects of sex on brain dopaminergic function have been sparsely studied in human subjects using modern imaging techniques. We have previously reported that the apparent affinity of [(11)C]raclopride for striatal D(2) dopamine receptors in vivo is lower in women than in men, whereas D(2) receptor density is not different. This finding indirectly suggests that women have a higher synaptic concentration of dopamine in the striatum. We explored further the basis of this phenomenon in an independent study and hypothesized that striatal presynaptic dopamine synthesis capacity would also be elevated in women. METHODS A total of 23 healthy men and 12 healthy women (age range 20-60 years) were studied using positron emission tomography and [(18)F]fluorodopa. RESULTS Women had significantly higher striatal [(18)F]fluorodopa uptake (Ki values) than men. The difference was more marked in the caudate (+26%) than in the putamen (+12%). In addition, there was a negative correlation between striatal [(18)F]fluorodopa Ki values and age in men but not in women. CONCLUSIONS The results further substantiate sex differences in striatal dopaminergic function in humans. This finding may be associated with sex differences in vulnerability and clinical course of neuropsychiatric disorders with dopaminergic dysregulation, e.g., schizophrenia, alcohol dependence, and Parkinsons disease.


Journal of Clinical Investigation | 1998

Insulin resistance of glucose uptake in skeletal muscle cannot be ameliorated by enhancing endothelium-dependent blood flow in obesity.

Hanna Laine; Hannele Yki-Järvinen; Olli Kirvelä; Tuula Tolvanen; Maria Raitakari; Olof Solin; Merja Haaparanta; Juhani Knuuti; Pirjo Nuutila

We tested the hypothesis that endothelium-dependent vasodilatation is a determinant of insulin resistance of skeletal muscle glucose uptake in human obesity. Eight obese (age 26+/-1 yr, body mass index 37+/-1 kg/m2) and seven nonobese males (25+/-2 yr, 23+/-1 kg/m2) received an infusion of bradykinin into the femoral artery of one leg under intravenously maintained normoglycemic hyperinsulinemic conditions. Blood flow was measured simultaneously in the bradykinin and insulin- and the insulin-infused leg before and during hyperinsulinemia using [15O]-labeled water ([15O]H2O) and positron emission tomography (PET). Glucose uptake was quantitated immediately thereafter in both legs using [18F]- fluoro-deoxy-glucose ([18F]FDG) and PET. Whole body insulin-stimulated glucose uptake was lower in the obese (507+/-47 mumol/m2 . min) than the nonobese (1205+/-97 micromol/m2 . min, P < 0.001) subjects. Muscle glucose uptake in the insulin-infused leg was 66% lower in the obese (19+/-4 micromol/kg muscle . min) than in the nonobese (56+/-9 micromol/kg muscle . min, P < 0.005) subjects. Bradykinin increased blood flow during hyperinsulinemia in the obese subjects by 75% from 16+/-1 to 28+/-4 ml/kg muscle . min (P < 0.05), and in the normal subjects by 65% from 23+/-3 to 38+/-9 ml/kg muscle . min (P < 0.05). However, this flow increase required twice as much bradykinin in the obese (51+/-3 microg over 100 min) than in the normal (25+/-1 mug, P < 0.001) subjects. In the obese subjects, blood flow in the bradykinin and insulin-infused leg (28+/-4 ml/kg muscle . min) was comparable to that in the insulin-infused leg in the normal subjects during hyperinsulinemia (24+/-5 ml/kg muscle . min). Despite this, insulin-stimulated glucose uptake remained unchanged in the bradykinin and insulin-infused leg (18+/-4 mumol/kg . min) compared with the insulin-infused leg (19+/-4 micromol/kg muscle . min) in the obese subjects. Insulin-stimulated glucose uptake also was unaffected by bradykinin in the normal subjects (58+/-10 vs. 56+/-9 micromol/kg . min, bradykinin and insulin versus insulin leg). These data demonstrate that obesity is characterized by two distinct defects in skeletal muscle: insulin resistance of cellular glucose extraction and impaired endothelium-dependent vasodilatation. Since a 75% increase in blood flow does not alter glucose uptake, insulin resistance in obesity cannot be overcome by normalizing muscle blood flow.

Collaboration


Dive into the Olof Solin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olli Eskola

Åbo Akademi University

View shared research outputs
Top Co-Authors

Avatar

Juha O. Rinne

Turku University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Bergman

Åbo Akademi University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge