Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olubukola Oluranti Babalola is active.

Publication


Featured researches published by Olubukola Oluranti Babalola.


Biotechnology Letters | 2010

Beneficial bacteria of agricultural importance

Olubukola Oluranti Babalola

The rhizosphere is the soil–plant root interphase and in practice consists of the soil adhering to the root besides the loose soil surrounding it. Plant growth-promoting rhizobacteria (PGPR) are potential agents for the biological control of plant pathogens. A biocontrol strain should be able to protect the host plant from pathogens and fulfill the requirement for strong colonization. Numerous compounds that are toxic to pathogens, such as HCN, phenazines, pyrrolnitrin, and pyoluteorin as well as, other enzymes, antibiotics, metabolites and phytohormones are the means by which PGPR act, just as quorum sensing and chemotaxis which are vital for rhizosphere competence and colonization. The presence of root exudates has a pronounced effect on the rhizosphere where they serve as an energy source, promoting growth and influencing the root system for the rhizobacteria. In certain instances they have products that inhibit the growth of soil-borne pathogens to the advantage of the plant root. A major source of concern is reproducibility in the field due to the complex interaction between the plant (plant species), microbe and the environment (soil fertility and moisture, day length, light intensity, length of growing season, and temperature). This review listed most of the documented PGPR genera and discussed their exploitation.


International Journal of Environmental Research and Public Health | 2017

A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents

Ayansina Ayangbenro; Olubukola Oluranti Babalola

Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal.


African Journal of Biotechnology | 2003

Amplification of 1-amino-cyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil

Olubukola Oluranti Babalola; Ellie O. Osir; A.I. Sanni; George D. Odhiambo

Experiments were conducted in pots to determine the growth effect of different rhizobacteria on maize under Striga hermonthica infestation. Three bacteria were selected based on their plant growth promoting effects. Whole bacterial cells of the rhizobacteria were used to amplify 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase gene by polymerase chain reaction (PCR). Each bacterial inoculation increased agronomic characteristics of maize although not always to a statistically significant extent. The extent of growth enhancement differs between the isolates. Enterobacter sakazakii 8MR5 had the ability to stimulate plant growth, however in the PCR study, ACC deaminase was not amplified from this isolate, indicating that not all plant growth-promoting rhizobacteria contain the enzyme ACC deaminase. In contrast, an ACC deaminase specific product was amplified from Pseudomonas sp. 4MKS8 and Klebsiella oxytoca 10MKR7. This is the first report of ACC deaminase in K. oxytoca.


International Journal of Environmental Research and Public Health | 2016

Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance

Muibat Omotola Fashola; Veronica Mpode Ngole-jeme; Olubukola Oluranti Babalola

Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment.


International Journal of Environmental Research and Public Health | 2012

Thermostable Bacterial Bioflocculant Produced by Cobetia Spp. Isolated from Algoa Bay (South Africa)

Anthony Ugbenyen; Sekelwa Cosa; Leonard V. Mabinya; Olubukola Oluranti Babalola; Farhad Aghdasi; Anthony I. Okoh

A novel bioflocculant-producing bacteria was isolated from sediment samples of Algoa Bay in the Eastern Cape Province of South Africa and the effect of culture conditions on the bioflocculant production was investigated. Analysis of the partial nucleotide sequence of the 16S rDNA of the bacteria revealed 99% similarity to Cobetia sp. L222 and the sequence was deposited in GenBank as Cobetia sp. OAUIFE (accession number JF799092). Cultivation condition studies revealed that bioflocculant production was optimal with an inoculum size of 2% (v/v), initial pH of 6.0, Mn2+ as the metal ion, and glucose as the carbon source. Metal ions, including Na+, K+, Li+, Ca2+and Mg2+ stimulated bioflocculant production, resulting in flocculating activity of above 90%. This crude bioflocculant is thermally stable, with about 78% of its flocculating activity remaining after heating at 100 °C for 25 min. Analysis of the purified bioflocculant revealed it to be an acidic extracellular polysaccharide.


African Journal of Biotechnology | 2003

Molecular techniques: An overview of methods for the detection of bacteria

Olubukola Oluranti Babalola

Several DNA molecular markers are now available for use in surveillance and investigation of food-borne outbreaks that were previously difficult to detect. The results from several sources of literature indicate substantially different degrees of sensitivities between conventional detection methods and molecular-based methods. The new technology is noted for increased sensitivity over the traditional culture methods which they complement. Key words : molecular techniques, fingerprinting, microorganism. African Journal of Biotechnology Vol. 2 (12), pp. 710-713, December 2003


Frontiers in Microbiology | 2017

Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture

Elizabeth T. Alori; Bernard R. Glick; Olubukola Oluranti Babalola

The use of excess conventional Phosphorus (P) fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se), arsenic (As) in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM) is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems. In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide.


International Journal of Phytoremediation | 2016

Effect of bacterial inoculation of strains of pseudomonas aeruginosa, alcaligenes feacalis and bacillus subtilis on germination, growth and heavy metal (cd, cr, and ni) uptake of brassica juncea

Robinson Junior Ndeddy Aka; Olubukola Oluranti Babalola

ABSTRACT Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg−1 of NiCl2, 100 mg kg−1 of CdCl2, and 150 mg kg−1 of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction.


World Journal of Microbiology & Biotechnology | 2017

Mechanisms of action of plant growth promoting bacteria

Oluwaseyi Samuel Olanrewaju; Bernard R. Glick; Olubukola Oluranti Babalola

The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.


International Journal of Environmental Research and Public Health | 2015

Detection of Antibiotic Resistant Staphylococcus aureus from Milk: A Public Health Implication

Muyiwa Ajoke Akindolire; Olubukola Oluranti Babalola; Collins Njie Ateba

The aim of this study was to investigate the occurrence, antibiotic susceptibility profiles, and virulence genes determinants of S. aureus isolated from milk obtained from retail outlets of the North-West Province, South Africa. To achieve this, 200 samples of raw, bulk and pasteurised milk were obtained randomly from supermarkets, shops and some farms in the North-West Province between May 2012 and April 2013. S. aureus was isolated and positively identified using morphological (Gram staining), biochemical (DNase, catalase, haemolysis and rapid slide agglutination) tests, protein profile analysis (MALDI-TOF mass spectrometry) and molecular (nuc specific PCR) methods. The antimicrobial resistance profiles of the isolates were determined using the phenotypic agar diffusion method. Genes encoding enterotoxins, exfoliative toxins and collagen adhesins were also screened using PCR. Among all the samples examined, 30 of 40 raw milk samples (75%), 25 of 85 bulk milk samples (29%) and 10 of 75 pasteurised milk samples (13%) were positive for S. aureus. One hundred and fifty-six PCR-confirmed S. aureus isolates were obtained from 75 contaminated milk samples. A large proportion (60%–100%) of the isolates was resistant to penicillin G, ampicillin, oxacillin, vancomycin, teicoplanin and erythromycin. On the contrary, low level resistance (8.3%–40%) was observed for gentamicin, kanamycin and sulphamethoxazole. Methicillin resistance was detected in 59% of the multidrug resistant isolates and this was a cause for concern. However, only a small proportion (20.6%) of these isolates possessed PBP2a which codes for Methicillin resistance in S. aureus. In addition, 32.7% of isolates possessed the sec gene whereas the sea, seb sed, see, cna, eta, etb genes were not detected. The findings of this study showed that raw, bulk and pasteurised milk in the North-West Province is contaminated with toxigenic and multi-drug resistant S. aureus strains. There is a need to implement appropriate control measures to reduce contamination as well as the spread of virulent S. aureus strains and the burden of disease in humans.

Collaboration


Dive into the Olubukola Oluranti Babalola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge