Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olusegun J. Ariwodola is active.

Publication


Featured researches published by Olusegun J. Ariwodola.


The Journal of Neuroscience | 2004

Ethanol Potentiation of GABAergic Synaptic Transmission May Be Self-Limiting: Role of Presynaptic GABAB Receptors

Olusegun J. Ariwodola; Jeff L. Weiner

Ethanol enhances GABAergic synaptic inhibition, and this interaction contributes to many of the behavioral and cognitive effects of this drug. Most studies suggest that ethanol enhances GABAergic neurotransmission via an allosteric potentiation of the postsynaptic GABAA receptors that mediate fast synaptic inhibition in the mammalian CNS. Despite widespread acceptance of this hypothesis, direct support for such a mechanism has been difficult to obtain. Ethanol does not enhance GABAA receptor function in all brain regions or under all experimental conditions, and factors responsible for this variability remain mostly unknown. Notably, blockade of GABAB receptors dramatically enhances ethanol potentiation of hippocampal GABAA IPSPs and IPSCs, suggesting that some unknown GABAB receptor mechanism limits the overall potentiating effect of ethanol on GABAergic synapses. In this study, we demonstrate that, at perisomatic synapses in the rat hippocampus, ethanol enhances presynaptic GABAB autoreceptor function and that this interaction reduces the overall potentiating effect of ethanol at these synapses. We further show that ethanol significantly elevates basal presynaptic GABAB receptor tone, possibly via an increase in spontaneous GABA release, and that pretreatment with a subthreshold concentration of the GABAB receptor agonist baclofen blocks ethanol but not flunitrazepam or pentobarbital potentiation of GABAA IPSCs. These data suggest that an interaction between ethanol and presynaptic GABAB autoreceptor activity regulates the ethanol sensitivity of GABAergic synapses. Given that the in vitro ethanol sensitivity of these synapses correlates with in vivo ethanol responsiveness in a number of rodent lines, our data further suggest that presynaptic GABAB receptor activity may play a role in regulating behavioral sensitivity to ethanol.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Alcohol potently inhibits the kainate receptor-dependent excitatory drive of hippocampal interneurons

Carta M; Olusegun J. Ariwodola; Jeff L. Weiner; Valenzuela Cf

Kainate receptors (KA-Rs) are members of the glutamate-gated family of ionotropic receptors, which also includes N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors. KA-Rs are important modulators of interneuron excitability in the CA1 region of the hippocampus. Activation of these receptors enhances interneuron firing, which robustly increases spontaneous inhibitory postsynaptic currents in pyramidal neurons. We report here that ethanol (EtOH) potently inhibits this KA-R-mediated effect at concentrations as low as those that can be achieved in blood after the ingestion of just 1–2 drinks (5–10 mM). Pressure application of kainate, in the presence of AMPA and NMDA receptor antagonists, evoked depolarizing responses in interneurons that triggered repetitive action potential firing. EtOH potently inhibited these responses to a degree that was sufficient to abolish action potential firing. This effect appears to be specific for KA-Rs, as EtOH did not affect action potential firing triggered by AMPA receptor-mediated depolarizing responses. Importantly, EtOH inhibited interneuron action potential firing in response to KA-R activation by synaptically released glutamate, suggesting that our findings are physiologically relevant. KA-R-dependent modulation of glutamate release onto pyramidal neurons was not affected by EtOH. Thus, EtOH increases excitability of pyramidal neurons indirectly by inhibiting the KA-R-dependent drive of γ-aminobutyric acid (GABA)ergic interneurons. We postulate that this effect may explain, in part, some of the paradoxical excitatory actions of this widely abused substance. The excitatory actions of EtOH may be perceived as positive by some individuals, which could contribute to the development of alcoholism.


The Journal of Neuroscience | 2013

Locomotor Sensitization to Ethanol Impairs NMDA Receptor-Dependent Synaptic Plasticity in the Nucleus Accumbens and Increases Ethanol Self-Administration

Karina Possa Abrahao; Olusegun J. Ariwodola; Tracy R. Butler; Andrew R. Rau; Mary Jane Skelly; Eugenia S. Carter; Nancy P. Alexander; Brian A. McCool; Maria Lucia Oliveira Souza-Formigoni; Jeff L. Weiner

Although alcoholism is a worldwide problem resulting in millions of deaths, only a small percentage of alcohol users become addicted. The specific neural substrates responsible for individual differences in vulnerability to alcohol addiction are not known. In this study, we used rodent models to study behavioral and synaptic correlates related to individual differences in the development of ethanol locomotor sensitization, a form of drug-dependent behavioral plasticity associated with addiction vulnerability. Male Swiss Webster mice were treated daily with saline or 1.8 g/kg ethanol for 21 d. Locomotor activity tests were performed once a week for 15 min immediately after saline or ethanol injections. After at least 11 d of withdrawal, cohorts of saline- or ethanol-treated mice were used to characterize the relationships between locomotor sensitization, ethanol drinking, and glutamatergic synaptic transmission in the nucleus accumbens. Ethanol-treated mice that expressed locomotor sensitization to ethanol drank significantly more ethanol than saline-treated subjects and ethanol-treated animals resilient to this form of behavioral plasticity. Moreover, ethanol-sensitized mice also had reduced accumbal NMDA receptor function and expression, as well as deficits in NMDA receptor-dependent long-term depression in the nucleus accumbens core after a protracted withdrawal. These findings suggest that disruption of accumbal core NMDA receptor-dependent plasticity may represent a synaptic correlate associated with ethanol-induced locomotor sensitization and increased propensity to consume ethanol.


Journal of Pharmacology and Experimental Therapeutics | 2006

Knockin Mice with Ethanol-Insensitive α1-Containing γ-Aminobutyric Acid Type A Receptors Display Selective Alterations in Behavioral Responses to Ethanol

David F. Werner; Yuri A. Blednov; Olusegun J. Ariwodola; Yuval Silberman; Exazevia Logan; Raymond B. Berry; Cecilia M. Borghese; Douglas B. Matthews; Jeff L. Weiner; Neil L. Harrison; R. Adron Harris; Gregg E. Homanics

Despite the pervasiveness of alcohol (ethanol) use, it is unclear how the multiple molecular targets for ethanol contribute to its many behavioral effects. The function of GABA type A receptors (GABAA-Rs) is altered by ethanol, but there are multiple subtypes of these receptors, and thus far, individual subunits have not been definitively linked with specific behavioral actions. The α1 subunit of the GABAA-R is the most abundant α subunit in the brain, and the goal of this study was to determine the role of receptors containing this subunit in alcohol action. We designed an α1 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity and constructed knockin mice containing this mutant subunit. Hippocampal slice recordings from these mice indicated that the mutant receptors were less sensitive to ethanols potentiating effects. Behaviorally, we observed that mutant mice recovered more quickly from the motor-impairing effects of ethanol and etomidate, but not pentobarbital, and showed increased anxiolytic effects of ethanol. No differences were observed in ethanol-induced hypnosis, locomotor stimulation, cognitive impairment, or in ethanol preference and consumption. Overall, these studies demonstrate that the postsynaptic effects of ethanol at GABAergic synapses containing the α1 subunit are important for specific ethanol-induced behavioral effects.


Neuropharmacology | 2008

Ethanol inhibition of kainate receptor-mediated excitatory neurotransmission in the rat basolateral nucleus of the amygdala

Anna K. Läck; Olusegun J. Ariwodola; Ann Chappell; Jeff L. Weiner; Brian A. McCool

The neurobiological mechanisms governing alcohol-induced alterations in anxiety-like behaviors are not fully understood. Given that the amygdala is a major emotional center in the brain and regulates the expression of both learned fear and anxiety, neurotransmitter systems within the basolateral amygdala represent likely mechanisms governing the anxiety-related effects of acute ethanol exposure. It is well established that, within the glutamatergic system, N-methyl-d-aspartate (NMDA)-type receptors are particularly sensitive to intoxicating concentrations of ethanol. However, recent evidence suggests that kainate-type glutamate receptors are sensitive to ethanol as well. Therefore, we examined the effect of acute ethanol on kainate receptor (KA-R)-mediated synaptic transmission in the basolateral amygdala (BLA) of Sprague-Dawley rats. Acute ethanol decreased KA-R-mediated excitatory postsynaptic currents (EPSCs) in the BLA in a concentration-dependent manner. Ethanol also inhibited currents evoked by focal application of the kainate receptor agonist (R,S)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), and ethanol inhibition of kainate EPSCs was not associated with a change in paired-pulse ratio, suggesting a postsynaptic mechanism of ethanol action. The neurophysiological consequences of this acute sensitivity were tested by measuring ethanols effects on KA-R-dependent modulation of synaptic plasticity. Acute ethanol, like the GluR5-specific antagonist (R,S)-3-(2-carboxybenzyl)willardiine (UBP 296), robustly diminished ATPA-induced increases in synaptic efficacy. Lastly, to better understand the relationship between KA-R activity and anxiety-like behavior, we bilaterally microinjected ATPA directly into the BLA. We observed an increase in measures of anxiety-like behavior, assessed in the light/dark box, with no change in locomotor activity. This evidence suggests that kainate receptors in the BLA are inhibited by pharmacologically relevant concentrations of ethanol and may contribute to some of the acute anxiolytic effects of this drug.


The Journal of Neuroscience | 2015

Increased Basolateral Amygdala Pyramidal Cell Excitability May Contribute to the Anxiogenic Phenotype Induced by Chronic Early-Life Stress

Andrew R. Rau; Ann Chappell; Tracy R. Butler; Olusegun J. Ariwodola; Jeffrey L. Weiner

Adolescence represents a particularly vulnerable period during which exposure to stressors can precipitate the onset of psychiatric disorders and addiction. The basolateral amygdala (BLA) plays an integral role in the pathophysiology of anxiety and addiction. Acute and chronic stress promote increases in BLA pyramidal cell firing, and decreasing BLA excitability alleviates anxiety measures in humans and rodents. Notably, the impact of early-life stress on the mechanisms that govern BLA excitability is unknown. To address this gap in our knowledge, we used a rodent model of chronic early-life stress that engenders robust and enduring increases in anxiety-like behaviors and ethanol intake and examined the impact of this model on the intrinsic excitability of BLA pyramidal cells. Adolescent social isolation was associated with a significant increase in the intrinsic excitability of BLA pyramidal cells and a blunting of the medium component of the afterhyperpolarization potential, a voltage signature of calcium-activated potassium (Kca) channel activity. Western blot analysis revealed reduced expression of small-conductance Kca (SK) channel protein in the BLA of socially isolated (SI) rats. Bath application of a positive SK channel modulator (1-EBIO) normalized firing in ex vivo recordings from SI rats, and in vivo intra-BLA 1-EBIO infusion reduced anxiety-like behaviors. These findings reveal that chronic adolescent stress impairs SK channel function, which contributes to an increase in BLA pyramidal cell excitability and highlights BLA SK channels as promising targets for the treatment of anxiety disorders and comorbid addiction. SIGNIFICANCE STATEMENT Although anxiety disorders and alcohol addiction frequently co-occur, the mechanisms that contribute to this comorbidity are poorly understood. Here, we used a rodent early-life stress model that leads to robust and longlasting increases in behaviors associated with elevated risk of anxiety disorders and addiction to identify novel neurobiological substrates that may underlie these behaviors. Our studies focused on the primary output neurons of the basolateral amygdala, a brain region that plays a key role in anxiety and addiction. We discovered that early-life stress decreases the activity of a specific class of potassium channels and increases the intrinsic excitability of BLA neurons and present evidence that enhancing the function of these channels normalizes BLA excitability and attenuates anxiety-like behaviors.


Frontiers in Integrative Neuroscience | 2014

The impact of social isolation on HPA axis function, anxiety-like behaviors, and ethanol drinking

Tracy R. Butler; Olusegun J. Ariwodola; Jeff L. Weiner

Dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis is often observed in alcoholics and humans subjected to early life stress, and animal models of ethanol (EtOH) dependence. We examined HPA axis function in a rodent model of early life stress that engenders increases in behavioral and neurobiological risk factors of alcoholism. Long-Evans male rats were group housed (GH) or socially isolated (SI) for 6 weeks during adolescence. We examined the corticosterone (CORT) response to stress with and without dexamethasone (DEX) and anxiety-like behaviors. Following the DEX suppression test and behavioral assays, half of the cohort engaged in 6 weeks of EtOH drinking in a homecage, two-bottle choice intermittent access model. A subset of the cohort was not exposed to EtOH, but was used for electrophysiological measurement of glutamatergic synaptic plasticity in the basolateral amygdala (BLA). Correlational analyses examined relationships between measures of CORT, anxiety-like behaviors, and EtOH intake/preference. With DEX pre-treatment, SI rats failed to suppress CORT in response to an acute stress; GH rats showed a significant suppression. In SI rats, there was a significant negative correlation between baseline CORT and elevated plus maze open arm time, as well as significant positive correlations between baseline CORT and both EtOH intake and preference. No significant relationships between baseline CORT and behavioral measures were observed in GH rats. Glutamatergic plasticity in the BLA was similar in magnitude between GH and SI rats, and was not altered by exogenous application of CORT. These data suggest that HPA axis function is affected by SI, and this is related to antecedent anxiety-like behavior and may predispose for future EtOH self-administration. Relationships between HPA axis function, anxiety, and EtOH measures in SI rats further strengthens the utility of this paradigm in modeling vulnerability for affective disorders and alcoholism.


Alcoholism: Clinical and Experimental Research | 2003

Ethanol modulation of excitatory and inhibitory synaptic transmission in rat and monkey dentate granule neurons.

Olusegun J. Ariwodola; T. L. Crowder; Kathleen A. Grant; James B. Daunais; David P. Friedman; Jeff L. Weiner

BACKGROUND The physiological mechanisms underlying the behavioral and cognitive effects of ethanol are not fully understood. However, there is now compelling evidence that ethanol acts, at least in part, by modulating the function of a small group of proteins that mediate excitatory and inhibitory synaptic transmission. For example, intoxicating concentrations of ethanol have been shown to enhance GABAergic synaptic inhibition and depress glutamatergic excitatory neurotransmission in a number of brain regions. Because all of these electrophysiological studies have been performed in rodent brain slice or neuronal culture preparations, direct evidence that ethanol exerts similar effects on synaptic transmission in the primate central nervous system is lacking. METHODS We have therefore developed methods to perform patch-clamp electrophysiological recordings from neurons in acutely prepared monkey (Macaca fascicularis) hippocampal slices. We have used these methods to compare the acute effects of ethanol on excitatory and inhibitory synaptic transmission in rat and monkey dentate granule neurons. RESULTS Under our recording conditions, ethanol significantly potentiated gamma-aminobutyric acid type A inhibitory postsynaptic currents in both rat and monkey neurons. In addition, ethanol significantly inhibited NMDA, but not AMPA, excitatory postsynaptic currents in dentate granule neurons from both species. Notably, no significant differences were observed in any of the pharmacological properties of inhibitory or excitatory synaptic responses recorded from rat and monkey neurons. CONCLUSIONS These data suggest that the differences in the behavioral effects of ethanol that have been observed between rats and higher-order mammals, such as monkeys and humans, may not reflect differences in the sensitivity of some of the major synaptic sites of ethanol action. Moreover, our results provide empirical evidence for the use of rodent brain slice preparations in elucidating synaptic mechanisms of ethanol action in the primate central nervous system.


Journal of Pharmacology and Experimental Therapeutics | 2002

Ethanol Antagonizes Kainate Receptor-Mediated Inhibition of Evoked GABA A Inhibitory Postsynaptic Currents in the Rat Hippocampal CA1 Region

T. L. Crowder; Olusegun J. Ariwodola; Jeff L. Weiner

Many studies have demonstrated that ethanol reduces glutamatergic synaptic transmission primarily by inhibiting theN-methyl-d-aspartate subtype of glutamate receptor. In contrast, the other two subtypes of ionotropic glutamate receptor (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate) have generally been shown to be insensitive to intoxicating concentrations of ethanol. However, we have previously identified a population of kainate receptors that mediate slow excitatory postsynaptic currents in the rat hippocampal CA3 pyramidal cell region that is potently inhibited by low concentrations of ethanol. In this study, we examined the effect of ethanol on kainate receptor-mediated inhibition of evoked GABAA inhibitory postsynaptic currents (IPSCs) in the rat hippocampal CA1 pyramidal cell region. Under our recording conditions, bath application of 1 μM kainate significantly inhibited GABAA IPSCs. This inhibition seemed to be mediated by the activation of somatodendritic kainate receptors on GABAergic interneurons and the subsequent activation of metabotropic GABAB receptors, because the kainate inhibition was largely blocked by pretreating slices with a GABAB receptor antagonist. Ethanol pretreatment significantly antagonized the inhibitory effect of kainate on GABAA IPSCs, at concentrations as low as 20 mM. In contrast, ethanol did not block the direct inhibitory effect of a GABAB receptor agonist on GABAA IPSCs. The results of this study suggest that modest concentrations of ethanol may antagonize presynaptic, as well as postsynaptic, kainate receptor function in the rat hippocampus.


Neuropsychopharmacology | 2010

Lateral Paracapsular GABAergic Synapses in the Basolateral Amygdala Contribute to the Anxiolytic Effects of β3 Adrenoceptor Activation

Yuval Silberman; Olusegun J. Ariwodola; Ann Chappell; Jordan T. Yorgason; Jeff L. Weiner

Norepinephrine (NE) is known to play an integral role in the neurobiological response to stress. Exposure to stressful stimuli increases NE levels in brain regions that regulate stress and anxiety, like the basolateral amygdala (BLA). NE is thought to increase excitability in these areas through α- and β-adrenoceptors (ARs), leading to increased anxiety. Surprisingly, recent studies have shown that systemic β3-AR agonist administration decreases anxiety-like behaviors, suggesting that β3-ARs may inhibit excitability in anxiety-related brain regions. Therefore, in this study we integrated electrophysiological and behavioral approaches to test the hypothesis that the anxiolytic effects of β3-AR agonists may be mediated by an increase in BLA GABAergic inhibition. We examined the effect of a selective β3-AR agonist, BRL37344 (BRL), on GABAergic synapses arising from local circuit interneurons and inhibitory synapses originating from a recently described population of cells called lateral paracapsular (LPCS) interneurons. Surprisingly, BRL selectively enhanced LPCS-evoked inhibitory postsynaptic currents (eIPSCs) with no effect on local GABAergic inhibition. BRL also had no effect on glutamatergic synaptic excitation within the BLA. BRL potentiation of LPCS eIPSCs was blocked by the selective β3-AR antagonist, SR59230A, or by intracellular dialysis of Rp-CAMPS (cAMP-dependent protein kinase inhibitor), and this enhancement was not associated with any changes in spontaneous IPSCs or LPCS paired-pulse ratio. BRL also increased the amplitude of unitary LPCS IPSCs (uIPSCs) with no effect on uIPSC failure rate. Finally, bilateral BLA microinjection of BRL reduced anxiety-like behaviors in an open-field assay and the elevated plus-maze. Collectively, these data suggest that β3-AR activation selectively enhances LPCS, but not local, BLA GABAergic synapses, and that increases in LPCS-mediated inhibition may contribute to the anxiolytic profile of β3-AR agonists.

Collaboration


Dive into the Olusegun J. Ariwodola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge