Oluwakayode Onireti
University of Surrey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oluwakayode Onireti.
IEEE Transactions on Wireless Communications | 2012
Oluwakayode Onireti; Fabien Heliot; Muhammad Imran
In this paper, we derive a generic closed-form approximation (CFA) of the energy efficiency-spectral efficiency (EE-SE) trade-off for the uplink of coordinated multi-point (CoMP) system and demonstrate its accuracy for both idealistic and realistic power consumption models (PCMs). We utilize our CFA to compare CoMP against conventional non-cooperative system with orthogonal multiple access. In the idealistic PCM, CoMP is more energy efficient than non-cooperative system due to a reduction in power consumption; whereas in the realistic PCM, CoMP can also be more energy efficient but due to an improvement in SE and mainly for cell-edge communication and small cell deployment.
IEEE Transactions on Communications | 2013
Oluwakayode Onireti; Fabien Heliot; Muhammad Imran
In this paper, the trade-off between energy efficiency (EE) and spectral efficiency (SE) is analyzed for both the uplink and downlink of the distributed multiple-input multiple-output (DMIMO) system over the Rayleigh fading channel while considering different types of power consumption models (PCMs). A novel tight closed-form approximation of the DMIMO EE-SE trade-off is presented and a detailed analysis is provided for the scenario with practical antenna configurations. Furthermore, generic and accurate low and high-SE approximations of this trade-off are derived for any number of radio access units (RAUs) in both the uplink and downlink channels. Our expressions have been utilized for assessing both the EE gain of DMIMO over co-located MIMO (CMIMO) and the incremental EE gain of DMIMO in the downlink channel. Our results reveal that DMIMO is more energy efficient than CMIMO for cell edge users in both the idealistic and realistic PCMs; whereas in terms of the incremental EE gain, connecting the user terminal to only one RAU is the most energy efficient approach when a realistic PCM is considered.
IEEE Communications Surveys and Tutorials | 2016
Abdelrahim Mohamed; Oluwakayode Onireti; Muhammad Imran; Ali Imran; Rahim Tafazolli
Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided.
IEEE Transactions on Vehicular Technology | 2016
Oluwakayode Onireti; Ahmed Zoha; Jessica Moysen; Ali Imran; Lorenza Giupponi; Muhammad Imran; Adnan Abu-Dayya
In this paper, we present a novel cell outage management (COM) framework for heterogeneous networks with split control and data planes-a candidate architecture for meeting future capacity, quality-of-service, and energy efficiency demands. In such an architecture, the control and data functionalities are not necessarily handled by the same node. The control base stations (BSs) manage the transmission of control information and user equipment (UE) mobility, whereas the data BSs handle UE data. An implication of this split architecture is that an outage to a BS in one plane has to be compensated by other BSs in the same plane. Our COM framework addresses this challenge by incorporating two distinct cell outage detection (COD) algorithms to cope with the idiosyncrasies of both data and control planes. The COD algorithm for control cells leverages the relatively larger number of UEs in the control cell to gather large-scale minimization-of-drive-test report data and detects an outage by applying machine learning and anomaly detection techniques. To improve outage detection accuracy, we also investigate and compare the performance of two anomaly-detecting algorithms, i.e., k-nearest-neighbor- and local-outlier-factor-based anomaly detectors, within the control COD. On the other hand, for data cell COD, we propose a heuristic Grey-prediction-based approach, which can work with the small number of UE in the data cell, by exploiting the fact that the control BS manages UE-data BS connectivity and by receiving a periodic update of the received signal reference power statistic between the UEs and data BSs in its coverage. The detection accuracy of the heuristic data COD algorithm is further improved by exploiting the Fourier series of the residual error that is inherent to a Grey prediction model. Our COM framework integrates these two COD algorithms with a cell outage compensation (COC) algorithm that can be applied to both planes. Our COC solution utilizes an actor-critic-based reinforcement learning algorithm, which optimizes the capacity and coverage of the identified outage zone in a plane, by adjusting the antenna gain and transmission power of the surrounding BSs in that plane. The simulation results show that the proposed framework can detect both data and control cell outage and compensate for the detected outage in a reliable manner.
IEEE Communications Surveys and Tutorials | 2017
Paulo Valente Klaine; Muhammad Imran; Oluwakayode Onireti; Richard Demo Souza
In this paper, a survey of the literature of the past 15 years involving machine learning (ML) algorithms applied to self-organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of self-organizing networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this paper also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future.
international conference on communications | 2015
Abdelrahim Mohamed; Oluwakayode Onireti; Seyed Amir Hoseinitabatabaei; Muhammad Imran; Ali Imran; Rahim Tafazolli
In research community, a new radio access network architecture with a logical separation between control plane (CP) and data plane (DP) has been proposed for future cellular systems. It aims to overcome limitations of the conventional architecture by providing high data rate services under the umbrella of a coverage layer in a dual connection mode. This configuration could provide significant savings in signalling overhead. In particular, mobility robustness with minimal handover (HO) signalling is considered as one of the most promising benefits of this architecture. However, the DP mobility remains an issue that needs to be investigated. We consider predictive DP HO management as a solution that could minimise the out-of-band signalling related to the HO procedure. Thus we propose a mobility prediction scheme based on Markov Chains. The developed model predicts the users trajectory in terms of a HO sequence in order to minimise the interruption time and the associated signalling when the HO is triggered. Depending on the prediction accuracy, numerical results show that the predictive HO management strategy could significantly reduce the signalling cost as compared with the conventional non-predictive mechanism.
european signal processing conference | 2014
Barry G. Evans; Oluwakayode Onireti; Theodoros Spathopoulos; Muhammad Imran
The next generation of mobile radio communication systems - so called 5G - will provide some major changes to those generations to date. The ability to cope with huge increases in data traffic at reduced latencies and improved quality of user experience together with major reduction in energy usage are big challenges. In addition future systems will need to embody connections to billions of objects - the so called Internet of Things (IoT) which raise new challenges. Visions of 5G are now available from regions across the World and research is ongoing towards new standards. The consensus is a flatter architecture that adds a dense network of small cells operating in the millimetre wave bands and which are adaptable and software controlled. But what place for satellites in such a vision? The paper examines several potential roles for satellite including coverage extension, content distribution, providing resilience, improved spectrum utilisation and integrated signalling systems.
international conference on communications | 2015
Oluwakayode Onireti; Ali Imran; Muhammad Imran; Rahim Tafazolli
In this paper, using stochastic geometry, we investigate the average energy efficiency (AEE) of the user terminal (UT) in the uplink of a two-tier heterogeneous network, where the two tiers are operated on separate carrier frequencies. In such a deployment, a typical UT must periodically perform the interfrequency small-cell discovery (ISCD) process to discover small cells in its neighborhood and benefit from the high data rate and traffic offloading opportunity that small cells present. We assume that the base stations of each tier and UTs are randomly located, and we derive the average ergodic rate and UT power consumption, which are later used for our AEE evaluation. The AEE incorporates the percentage of time that a typical UT missed small-cell offloading opportunity as a result of the periodicity of the ISCD process. The additional power consumed by the UT due to the ISCD measurement is also included. Moreover, we derive the optimal ISCD periodicity based on the UTs average energy consumption (AEC) and AEE. Our results reveal that ISCD periodicity must be selected with the objective of either minimizing the UTs AEC or maximizing the UTs AEE.
international conference on communications | 2015
Abdelrahim Mohamed; Oluwakayode Onireti; Muhammad Imran; Ali Imrany; Rahim Tafazolli
Most of the wireless systems such as the long term evolution (LTE) adopt a pilot symbol-aided channel estimation approach for data detection purposes. In this technique, some of the transmission resources are allocated to common pilot signals which constitute a significant overhead in current standards. This can be traced to the worst-case design approach adopted in these systems where the pilot spacing is chosen based on extreme condition assumptions. This suggests extending the set of the parameters that can be adaptively adjusted to include the pilot density. In this paper, we propose an adaptive pilot pattern scheme that depends on estimating the channel correlation. A new system architecture with a logical separation between control and data planes is considered and orthogonal frequency division multiplexing (OFDM) is chosen as the access technique. Simulation results show that the proposed scheme can provide a significant saving of the LTE pilot overhead with a marginal performance penalty.
arXiv: Networking and Internet Architecture | 2017
Mohsin Khalil; Junaid Qadir; Oluwakayode Onireti; Muhammad Imran; Shahzad Younis
The cellular technology is mostly an urban technology that has been unable to serve rural areas well. This is because the traditional cellular models are not economical for areas with low user density and lesser revenues. In 5G cellular networks, the coverage dilemma is likely to remain the same, thus widening the rural-urban digital divide further. It is about time to identify the root cause that has hindered the rural technology growth and analyse the possible options in 5G architecture to address this issue. We advocate that it can only be accomplished in two phases by sequentially addressing economic viability followed by performance progression. We deliberate how various works in literature focus on the later stage of this ‘two-phase’ problem and are not feasible to implement in the first place. We propose the concept of TV band white space (TVWS) dovetailed with 5G infrastructure for rural coverage and show that it can yield cost-effectiveness from a service providers perspective.