Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oluwaseun O. Ojo is active.

Publication


Featured researches published by Oluwaseun O. Ojo.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma

Katharina Mahn; Stuart J. Hirst; Sun Ying; Mark R. Holt; Paul Lavender; Oluwaseun O. Ojo; Leonard Siew; David E. Simcock; Clare G. McVicker; Varsha Kanabar; Vladimir A. Snetkov; Brian O'Connor; Charlotta Karner; David J. Cousins; Patricia Macedo; K. Fan Chung; Christopher Corrigan; Jeremy P. T. Ward; Tak H. Lee

Phenotypic modulation of airway smooth muscle (ASM) is an important feature of airway remodeling in asthma that is characterized by enhanced proliferation and secretion of pro-inflammatory chemokines. These activities are regulated by the concentration of free Ca2+ in the cytosol ([Ca2+]i). A rise in [Ca2+]i is normalized by rapid reuptake of Ca2+ into sarcoplasmic reticulum (SR) stores by the sarco/endoplasmic reticulum Ca2+ (SERCA) pump. We examined whether increased proliferative and secretory responses of ASM from asthmatics result from reduced SERCA expression. ASM cells were cultured from subjects with and without asthma. SERCA expression was evaluated by western blot, immunohistochemistry and real-time PCR. Changes in [Ca2+]i, cell spreading, cellular proliferation, and eotaxin-1 release were measured. Compared with control cells from healthy subjects, SERCA2 mRNA and protein expression was reduced in ASM cells from subjects with moderately severe asthma. SERCA2 expression was similarly reduced in ASM in vivo in subjects with moderate/severe asthma. Rises in [Ca2+]i following cell surface receptor-induced SR activation, or inhibition of SERCA-mediated Ca2+ re-uptake, were attenuated in ASM cells from asthmatics. Likewise, the return to baseline of [Ca]i after stimulation by bradykinin was delayed by approximately 50% in ASM cells from asthmatics. siRNA-mediated knockdown of SERCA2 in ASM from healthy subjects increased cell spreading, eotaxin-1 release and proliferation. Our findings implicate a deficiency in SERCA2 in ASM in asthma that contributes to its secretory and hyperproliferative phenotype in asthma, and which may play a key role in mechanisms of airway remodeling.


Pulmonary Pharmacology & Therapeutics | 2013

cAMP regulation of airway smooth muscle function.

Charlotte K. Billington; Oluwaseun O. Ojo; Raymond B. Penn; Satoru Ito

Agonists activating β(2)-adrenoceptors (β(2)ARs) on airway smooth muscle (ASM) are the drug of choice for rescue from acute bronchoconstriction in patients with both asthma and chronic obstructive pulmonary disease (COPD). Moreover, the use of long-acting β-agonists combined with inhaled corticosteroids constitutes an important maintenance therapy for these diseases. β-Agonists are effective bronchodilators due primarily to their ability to antagonize ASM contraction. The presumed cellular mechanism of action involves the generation of intracellular cAMP, which in turn can activate the effector molecules cAMP-dependent protein kinase (PKA) and Epac. Other agents such as prostaglandin E(2) and phosphodiesterase inhibitors that also increase intracellular cAMP levels in ASM, can also antagonize ASM contraction, and inhibit other ASM functions including proliferation and migration. Therefore, β(2)ARs and cAMP are key players in combating the pathophysiology of airway narrowing and remodeling. However, limitations of β-agonist therapy due to drug tachyphylaxis related to β(2)AR desensitization, and recent findings regarding the manner in which β(2)ARs and cAMP signal, have raised new and interesting questions about these well-studied molecules. In this review we discuss current concepts regarding β(2)ARs and cAMP in the regulation of ASM cell functions and their therapeutic roles in asthma and COPD.


Thorax | 2010

Ca2+ homeostasis and structural and functional remodelling of airway smooth muscle in asthma

Katharina Mahn; Oluwaseun O. Ojo; Gianna Chadwick; Philip I. Aaronson; Jeremy P. T. Ward; Tak H. Lee

Asthma is characterised by airway hyper-responsiveness and remodelling, and there is mounting evidence that alterations in the phenotype of airway smooth muscle (ASM) play a central role in these processes. Although the concept that dysregulation of ASM Ca2+ homeostasis may underlie at least part of these alterations has been around for many years, it is only relatively recently that the availability of ASM biopsies from subjects with mild and moderate asthma has allowed it to be properly investigated. In this article, critical components of the pathobiology of asthmatic ASM, including contractile function, proliferation, cell migration and secretion of proinflammatory cytokines and chemokines, are reviewed and related to associated changes in ASM Ca2+ homeostasis. Based on this evidence, it is proposed that a unifying mechanism for the abnormal asthmatic phenotype is dysregulation of Ca2+ homeostasis caused at least in part by a downregulation in expression and function of sarcoendoplasmic Ca2+ ATPases (SERCAs).


Pulmonary Pharmacology & Therapeutics | 2013

Phenotype modulation of airway smooth muscle in asthma

David B. Wright; Thomas Trian; Sana Siddiqui; Chris D. Pascoe; Jill R. Johnson; Bart G. J. Dekkers; Shyamala Dakshinamurti; Rushita A. Bagchi; Janette K. Burgess; Varsha Kanabar; Oluwaseun O. Ojo

The biological responses of airway smooth muscle (ASM) are diverse, in part due to ASM phenotype plasticity. ASM phenotype plasticity refers to the ability of ASM cells to change the degree of a variety of functions, including contractility, proliferation, migration and secretion of inflammatory mediators. This plasticity occurs due to intrinsic or acquired abnormalities in ASM cells, and these abnormalities or predisposition of the ASM cell may alter the ASM response and in some cases recapitulate disease hallmarks of asthma. These phenotypic changes are ultimately determined by multiple stimuli and occur due to alterations in the intricate balance or reversible state that maintains ASM cells in either a contractile or synthetic state, through processes termed maturation or modulation, respectively. To elucidate the role of ASM phenotype in disease states, numerous in vitro studies have suggested a phenotypic switch in ASM primary cell cultures as an explanation for the plethora of responses mediated by ASM cells. Moreover, there is overwhelming evidence suggesting that the immunomodulatory response of ASM is due to the acquisition of a synthetic phenotype; however, whether this degree of plasticity is present in vivo as opposed to cell culture-based models remains speculative. Nonetheless, this review will give an overall scope of ASM phenotypic markers, triggers of ASM phenotype modulation and novel therapeutic approaches to control ASM phenotype plasticity.


Biochimica et Biophysica Acta | 2014

Airway mesenchymal cell death by mevalonate cascade inhibition: integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins.

Saeid Ghavami; Pawan Sharma; Behzad Yeganeh; Oluwaseun O. Ojo; Aruni Jha; Mark M. Mutawe; Hessam H. Kashani; Marek Los; Thomas Klonisch; Helmut Unruh; Andrew J. Halayko

HMG-CoA reductase, the proximal rate-limiting enzyme in the mevalonate pathway, is inhibited by statins. Beyond their cholesterol lowering impact, statins have pleiotropic effects and their use is linked to improved lung health. We have shown that mevalonate cascade inhibition induces apoptosis and autophagy in cultured human airway mesenchymal cells. Here, we show that simvastatin also induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in these cells. We tested whether coordination of ER stress, autophagy and apoptosis determines survival or demise of human lung mesenchymal cells exposed to statin. We observed that simvastatin exposure activates UPR (activated transcription factor 4, activated transcription factor 6 and IRE1α) and caspase-4 in primary human airway fibroblasts and smooth muscle cells. Exogenous mevalonate inhibited apoptosis, autophagy and UPR, but exogenous cholesterol was without impact, indicating that sterol intermediates are involved with mechanisms mediating statin effects. Caspase-4 inhibition decreased simvastatin-induced apoptosis, whereas inhibition of autophagy by ATG7 or ATG3 knockdown significantly increased cell death. In BAX(-/-)/BAK(-/-) murine embryonic fibroblasts, simvastatin-triggered apoptotic and UPR events were abrogated, but autophagy flux was increased leading to cell death via necrosis. Our data indicate that mevalonate cascade inhibition, likely associated with depletion of sterol intermediates, can lead to cell death via coordinated apoptosis, autophagy, and ER stress. The interplay between these pathways appears to be principally regulated by autophagy and Bcl-2-family pro-apoptotic proteins. These findings uncover multiple mechanisms of action of statins that could contribute to refining the use of such agent in treatment of lung disease.


Pulmonary Pharmacology & Therapeutics | 2013

Emerging airway smooth muscle targets to treat asthma.

Sana Siddiqui; Naresh Singh Redhu; Oluwaseun O. Ojo; Bo Liu; Nneka Irechukwu; Charlotte K. Billington; Luke J. Janssen; Lyn M. Moir

Asthma is characterized in part by variable airflow obstruction and non-specific hyperresponsiveness to a variety of bronchoconstrictors, both of which are mediated by the airway smooth muscle (ASM). The ASM is also involved in the airway inflammation and airway wall remodeling observed in asthma. For all these reasons, the ASM provides an important target for the treatment of asthma. Several classes of drugs were developed decades ago which targeted the ASM - including β-agonists, anti-cholinergics, anti-histamines and anti-leukotrienes - but no substantially new class of drug has appeared recently. In this review, we summarize the on-going work of several laboratories aimed at producing novel targets and/or tools for the treatment of asthma. These range from receptors and ion channels on the ASM plasmalemma, to intracellular effectors (particularly those related to cyclic nucleotide signaling, calcium-homeostasis and phosphorylation cascades), to anti-IgE therapy and outright destruction of the ASM itself.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

High-mobility group box 1 promotes extracellular matrix synthesis and wound repair in human bronchial epithelial cells

Oluwaseun O. Ojo; Min Hyung Ryu; Aruni Jha; Helmut Unruh; Andrew J. Halayko

High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) protein that binds Toll-like receptors (e.g., TLR4) and the receptor for advanced glycated end products (RAGE). The direct effects of HMGB1 on airway structural cells are not fully known. As epithelial cell responses are fundamental drivers of asthma, including abnormal repair-restitution linked to changes in extracellular matrix (ECM) synthesis, we tested the hypothesis that HMGB1 promotes bronchial epithelial cell wound repair via TLR4 and/or RAGE signaling that regulates ECM (fibronectin and the γ2-chain of laminin-5) and integrin protein abundance. To assess impact of HMGB1 we used molecular and pharmacological inhibitors of RAGE or TLR4 signaling in scratch wound, immunofluorescence, and immunoblotting assays to assess wound repair, ECM synthesis, and phosphorylation of intracellular signaling. HMGB1 increased wound closure, and this effect was attenuated by blocking RAGE and TLR4 signaling. HMGB1-induced fibronectin and laminin-5 (γ2 chain) was diminished by blocking RAGE and/or blunting TLR4 signaling. Similarly, induction of α3-integrin receptor for fibronectin and laminin-5 was also diminished by blocking TLR4 signaling and RAGE. Lastly, rapid and/or sustained phosphorylation of SMAD2, ERK1/2, and JNK signaling modulated HMGB1-induced wound closure. Our findings suggest a role for HMGB1 in human airway epithelial cell repair and restitution via multiple pathways mediated by TLR4 and RAGE that underpin increased ECM synthesis and modulation of cell-matrix adhesion.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Chronic exposure to perfluorinated compounds: impact on airway hyperresponsiveness and inflammation

Min Hyung Ryu; Aruni Jha; Oluwaseun O. Ojo; Thomas H. Mahood; Sujata Basu; Karen A. Detillieux; Neda Nikoobakht; Charles S. Wong; Mark Loewen; Allan B. Becker; Andrew J. Halayko

Emerging epidemiological evidence reveals a link between lung disease and exposure to indoor pollutants such as perfluorinated compounds (PFCs). PFC exposure during critical developmental stages may increase asthma susceptibility. Thus, in a murine model, we tested the hypothesis that early life and continued exposure to two ubiquitous household PFCs, perfluorooctanoic acid (PFOA) and perflurooctanesulfonic acid (PFOS), can induce lung dysfunction that exacerbates allergen-induced airway hyperresponsiveness (AHR) and inflammation. Balb/c mice were exposed to PFOA or PFOS (4 mg/kg chow) from gestation day 2 to 12 wk of age by feeding pregnant and nursing dams, and weaned pups. Some pups were also sensitized and challenged with ovalbumin (OVA). We assessed lung function and inflammatory cell and cytokine expression in the lung and examined bronchial goblet cell number. PFOA, but not PFOS, without the OVA sensitization/challenge induced AHR concomitant with a 25-fold increase of lung macrophages. PFOA exposure did not affect OVA-induced lung inflammatory cell number. In contrast, PFOS exposure inhibited OVA-induced lung inflammation, decreasing total cell number in lung lavage by 68.7%. Interferon-γ mRNA in the lung was elevated in all PFC-exposed groups. Despite these effects, neither PFOA nor PFOS affected OVA-induced AHR. Our data do not reveal PFOA or PFOS exposure as a risk factor for more severe allergic asthma-like symptoms, but PFOA alone can induce airway inflammation and alter airway function.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

NMDA receptors mediate contractile responses in human airway smooth muscle cells

Vidyanand Anaparti; Ramses Ilarraza; Kanami Orihara; Gerald L. Stelmack; Oluwaseun O. Ojo; Thomas H. Mahood; Helmut Unruh; Andrew J. Halayko; Redwan Moqbel

Human airway smooth muscle (HASM) exhibits enhanced contractility in asthma. Inflammation is associated with airway hypercontractility, but factors that underpin these features are not fully elucidated. Glutamate toxicity associated with increased plasma glutamate concentrations was observed in airway inflammation, suggesting that multisubunit glutamate receptors, N-methyl-d-aspartate receptors (NMDA-R) contribute to airway hyperreactivity. We tested the hypothesis that HASM expresses NMDA-R subunits that can form functional receptors to mediate contractile responses to specific extracellular ligands. In cultured HASM cells, we measured NMDA-R subunit mRNA and protein abundance by quantitative PCR, immunoblotting, flow cytometry, and epifluorescence immunocytochemistry. We measured mRNA for a number of NMDA-R subunits, including the obligatory NR1 subunit, which we confirmed to be present as a protein. In vitro and ex vivo functional NMDA-R activation in HASM cells was measured using intracellular calcium flux (fura-2 AM), collagen gel contraction assays, and murine thin-cut lung slices (TCLS). NMDA, a pharmacological glutamate analog, induced cytosolic calcium mobilization in cultured HASM cells. We detected three different temporal patterns of calcium response, suggesting the presence of heterogeneous myocyte subpopulations. NMDA-R activation also induced airway contraction in murine TCLS and soft collagen gels seeded with HASM cells. Responses in cells, lung slices, and collagen gels were mediated by NMDA-R, as they could be blocked by (2R)-amino-5-phosphonopentanoate, a specific NMDA-R inhibitor. In summary, we reveal the presence of NMDA-R in HASM that mediate contractile responses via glutamatergic mechanisms. These findings suggest that accumulation of glutamate-like ligands for NMDA-R associated with airway inflammation contributes directly to airway hyperreactivity.


British Journal of Pharmacology | 2018

Prophylactic benefits of systemically delivered simvastatin treatment in a house dust mite challenged murine model of allergic asthma

Aruni Jha; Min H Ryu; Oluwaseun O. Ojo; Hilary J. Bews; Jules C. Carlson; Jacquie Schwartz; Sujata Basu; Charles S Wong; Andrew J. Halayko

Systemically delivered statins can blunt airway inflammation in ovalbumin‐challenged mice. However, in asthma clinical trials the beneficial effects of introducing oral statins are not compelling. We have invetigated this discrepancy using a clinically relevant murine model of allergic asthma, and by including a prophylactic study arm.

Collaboration


Dive into the Oluwaseun O. Ojo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aruni Jha

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sujata Basu

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar

Sana Siddiqui

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge