Om Rupela
International Crops Research Institute for the Semi-Arid Tropics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Om Rupela.
Microbiological Research | 2014
Subramaniam Gopalakrishnan; Srinivas Vadlamudi; Prakash Bandikinda; Arumugam Sathya; Rajendran Vijayabharathi; Om Rupela; Himabindu Kudapa; Krishnamohan Katta; Rajeev K. Varshney
Six actinomycetes, CAI-13, CAI-85, CAI-93, CAI-140, CAI-155 and KAI-180, isolated from six different herbal vermi-composts were characterized for in vitro plant growth-promoting (PGP) properties and further evaluated in the field for PGP activity in rice. Of the six actinomycetes, CAI-13, CAI-85, CAI-93, CAI-140 and CAI-155 produced siderophores; CAI-13, CAI-93, CAI-155 and KAI-180 produced chitinase; CAI-13, CAI-140, CAI-155 and KAI-180 produced lipase; CAI-13, CAI-93, CAI-155 and KAI-180 produced protease; and CAI-13, CAI-85, CAI-140 and CAI-155 produced ß-1-3-glucanase whereas all the six actinomycetes produced cellulase, hydrocyanic acid and indole acetic acid (IAA). The actinomycetes were able to grow in NaCl concentrations of up to 8%, at pH values between 7 and 11, temperatures between 20 and 40 °C and compatible with fungicide bavistin at field application levels. In the rice field, the actinomycetes significantly enhanced tiller numbers, panicle numbers, filled grain numbers and weight, stover yield, grain yield, total dry matter, root length, volume and dry weight over the un-inoculated control. In the rhizosphere, the actinomycetes also significantly enhanced total nitrogen, available phosphorous, % organic carbon, microbial biomass carbon and nitrogen and dehydrogenase activity over the un-inoculated control. Sequences of 16S rDNA gene of the actinomycetes matched with different Streptomyces species in BLAST analysis. Of the six actinomycetes, CAI-85 and CAI-93 were found superior over other actinomycetes in terms of PGP properties, root development and crop productivity. qRT-PCR analysis on selected plant growth promoting genes of actinomycetes revealed the up-regulation of IAA genes only in CAI-85 and CAI-93.
World Journal of Microbiology & Biotechnology | 2011
Subramaniam Gopalakrishnan; Pagidi Humayun; Bandru Keerthi Kiran; Iyer Girish Kumar Kannan; Meesala Sree Vidya; Kanala Deepthi; Om Rupela
A total of 360 bacteria, isolated from the rhizospheres of a system of rice intensification (SRI) fields, were characterized for the production of siderophore, fluorescence, indole acetic acid (IAA), hydrocyanic acid (HCN) and solubilization of phosphorus. Of them, seven most promising isolates (SRI-156, -158, -178, -211, -229, -305 and -360) were screened for their antagonistic potential against Macrophomina phaseolina (causes charcoal rot in sorghum) by dual culture assay, blotter paper assay and in greenhouse. All the seven isolates inhibited M. phaseolina in dual culture assay, whereas six isolates solubilized phosphorous (except SRI-360), all seven produced siderophore, four produced fluorescence (except SRI-178, -229 and -305), six produced IAA (except SRI-305) and five produced HCN (except SRI-158 and -305). In the blotter paper assay, no charcoal rot infection was observed in SRI-156-treated sorghum roots, indicating complete inhibition of the pathogen, while the roots treated with the other isolates showed 49–76% lesser charcoal rot infection compared to the control. In the antifungal activity test (in green house on sorghum), all the isolates increased shoot dry mass by 15–23% and root dry mass by 15–20% (except SRI-158 and -360), over the control. In order to confirm the plant growth-promoting (PGP) traits of the isolates, the green house experiment was repeated but, in the absence of M. phaseolina. The results further confirmed the PGP traits of the isolates as evidenced by increases in shoot and root dry mass, 22–100% and 5–20%, respectively, over the control. The sequences of 16S rDNA gene of the isolates SRI-156, -158, -178, -211, -229, -305 and -360 were matched with Pseudomonasplecoglossicida, Brevibacterium antiquum, Bacillus altitudinis, Enterobacter ludwigii, E. ludwigii, Acinetobacter tandoii and P. monteilii, respectively in BLAST analysis. This study indicates that the selected bacterial isolates have the potential for PGP and control of charcoal rot disease in sorghum.
African Journal of Biotechnology | 2011
Subramaniam Gopalakrishnan; Bandru Keerthi Kiran; Pagidi Humayun; Meesala Sree Vidya; Kanala Deepthi; Simi Jacob; Srinivas Vadlamudi; Gottumukkala Alekhya; Om Rupela
A total of 137 actinomycetes, isolated from 25 different herbal vermicomposts, were characterized for their antagonistic potential against Macrophomina phaseolina by dual-culture assay. Of them, eight most promising isolates (CAI-17, CAI-21, CAI-26, CAI-68, CAI-78, KAI-26, KAI-27 and MMA-32) were characterized for the production of siderophore, chitinase, protease, hydrocyanic acid (HCN), indole acetic acid (IAA) and further evaluated for their antagonistic potential against M. phaseolina by blotterpaper assay and in greenhouse. All the eight isolates produced HCN and IAA, seven produced siderophore (except CAI-78) and protease (except KAI-27) and four produced chitinase (CAI-26, KAI-26, KAI-27 and MMA-32). In the blotter-paper assay, no charcoal-rot infection was observed in KAI-26 and KAI-27-treated sorghum roots, indicating complete inhibition of the pathogen, while the other isolates showed 47 to 88% lesser charcoal-rot infection compared to the control. In the antifungal activity test against M. phaseolina (in greenhouse on sorghum), all the isolates increased in shoot dry mass by 28 to 53% and root dry mass by 5 to 21%, over the control. In order to confirm the plant growth promoting (PGP) traits of the isolates, the green house experiment was repeated, but in the absence of M. phaseolina . The results further confirmed the PGP traits of the isolates as evidenced by 15 to 34% increase in shoot dry mass on six isolates (except CAI-26 and KAI-27), 14 to 57% increase in root dry mass on five isolates (except CAI-68, KAI-26 and KAI-27), 17 to 60% increase in root length on five isolates (except CAI-17, CAI-21 and CAI-68) and 10 to 64% increase in root volume on six isolates (except CAI-17 and CAI-68). Culture filtrate of three potential actinomycetes (CAI-21, CAI-26 and MMA32) at 0.5% inhibited the growth of M. phaseolina, indicating that the metabolites of these actinomycetes were responsible for the inhibition. The sequences of 16S rDNA gene of the isolates matched with Streptomyces but with different species in BLAST analysis. This study indicates that the selected actinomycetes have the potential for PGP and control of charcoal-rot disease in sorghum.
SpringerPlus | 2012
Subramaniam Gopalakrishnan; Hari D. Upadhyaya; Srinivas Vadlamudi; Pagidi Humayun; Meesala Sree Vidya; Gottumukkala Alekhya; Amit Singh; Rajendran Vijayabharathi; Ratna Kumari Bhimineni; Murali Seema; Abhishek Rathore; Om Rupela
Seven isolates of bacteria (SRI-156, SRI-158, SRI-178, SRI-211, SRI-229, SRI-305 and SRI-360) were earlier reported by us as having potential for biocontrol of charcoal rot of sorghum and plant growth promotion (PGP) of the plant. In the present study, the seven isolates were characterized for their physiological traits (tolerance to salinity, pH, temperature and resistance to antibiotics and fungicides) and further evaluated in the field for their PGP of rice. All the seven isolates were able to grow at pH values between 5 and 13, in NaCl concentrations of up to 8% (except SRI-156 and SRI-360), temperatures between 20 and 40°C and were resistant to ampicillin (>100 ppm; except SRI-158 and SRI-178) but sensitive (<10 ppm) to chloramphenicol, kanamycin, nalidixic acid, streptomycin (except SRI-156 and SRI-211) and tetracycline. They were tolerant to fungicides benlate and captan, except SRI-158 and SRI-178, bavistin and sensitive to thiram (except SRI-156 and SRI-211) at field application level. In the field, four of the seven isolates (SRI-158, SRI-211, SRI-229 and SRI-360) significantly enhanced the tiller numbers, stover and grain yields, total dry matter, root length, volume and dry weight over the un-inoculated control. In the rhizosphere soil at harvest, all the isolates significantly enhanced microbial biomass carbon (except SRI-156), microbial biomass nitrogen and dehydrogenase activity (up to 33%, 36% and 39%, respectively) and total N, available P and% organic carbon (up to 10%, 38% and 10%, respectively) compared to the control. This investigation further confirms that the SRI isolates have PGP properties.
Canadian Journal of Microbiology | 2013
Subramaniam Gopalakrishnan; Srinivas Vadlamudi; Shravya Apparla; Prakash Bandikinda; Rajendran Vijayabharathi; Ratna Kumari Bhimineni; Om Rupela
Five strains of Streptomyces (CAI-17, CAI-68, CAI-78, KAI-26, and KAI-27) were previously reported to have potential for charcoal rot control and plant growth promotion (PGP) in sorghum. In this study, those 5 Streptomyces strains were characterized for their enzymatic activities and evaluated for their PGP capabilities on rice. All the Streptomyces strains were able to produce lipase and β-1,3-glucanase; grew in NaCl (up to 8%), at pH 5-13, and at temperatures 20-40 °C; and were resistant to ampicillin, sensitive to nalidixic acid, and highly sensitive to chloramphenicol, kanamycin, streptomycin, and tetracycline. They were highly tolerant to the fungicide bavistin but were highly sensitive to benlate, benomyl, and radonil. When evaluated on rice in the field, Streptomyces significantly enhanced tiller and panicle numbers, stover and grain yields, dry matter, root length, volume and dry weight, compared with the control. In the rhizosphere at harvest, microbial biomass carbon and nitrogen, dehydrogenase activity, total nitrogen, available phosphorus, and % organic carbon were also found significantly higher in Streptomyces-treated plots than in the control plots. This study further confirms that the selected Streptomyces have PGP activities.
Biocontrol Science and Technology | 2012
Subramaniam Gopalakrishnan; Pagidi Humayun; Srinivas Vadlamudi; Rajendran Vijayabharathi; Ratna Kumari Bhimineni; Om Rupela
Abstract Three strains of Streptomyces (CAI-21, CAI-26 and MMA-32) were earlier reported by us as having potential for biocontrol of charcoal rot of sorghum, caused by Macrophomina phaseolina (Tassi) Goid., and plant growth promotion (PGP) of the plant. In the present investigation, the three Streptomyces were characterised for their physiological traits (tolerance of salinity, temperature, pH and resistance to antibiotics) and further evaluated in the field for their PGP of rice, grown by a system of rice intensification methods. All three Streptomyces were able to grow in NaCl concentrations of up to 12% (except MMA-32), at pH values between 5 and 13 and temperatures between 20 and 40°C. They were highly resistant to ampicillin and trimethoprim (>800 ppm), sensitive to chloramphenicol, kanamycin and nalidixic acid (50–100 ppm) and highly sensitive to streptomycin and tetracycline (5–25 ppm). When evaluated for their PGP activity on seedlings of rice, % germination and shoot and root lengths were significantly enhanced over the control. In the field, the Streptomyces strains significantly enhanced the panicle length, filled grain numbers and weight, panicle weight, 1000 seed weight, tiller numbers, total dry matter, root length (39–65%), root volume (13–30%), root dry weight (16–24%), grain yield (9–11%) and stover yield (11–22%) over the control. In the rhizosphere soil (0–15 cm from root) at harvest, the population of actinomycetes was significantly enhanced as was microbial biomass carbon (27–83%) and nitrogen (24–43%), dehydrogenase activity (34–152%), available P (13–34%) and N (30–53%) and % organic carbon (26–28%). This study further confirms that the selected Streptomyces have PGP properties.
Indian Journal of Microbiology | 2010
B. Hameeda; G. Harini; Om Rupela; J. V. D. K. Kumar Rao; Gopal Reddy
Two hundred and seven bacteria were isolated from composts and macrofauna and screened for plant growth promoting and antagonistic traits. Seven of the 207 isolates showed antagonistic activity against Sclerotium rolfsii in plate culture. Inhibition of S. rolfsii by the bacterial isolates ranged between 61 and 84%. Two of the seven isolates were Bacillus sp. and rest belonged to Pseudomonas sp. Two isolates, Pseudomonas sp. CDB 35 and Pseudomonas sp. BWB 21 was compatible with chickpea Rhizobium sp. IC 59 and IC 76 in plate culture conditions. Increase in plant biomass (dry weight) ranged between 18 and 30% on application of these bacteria by seed coating and seed priming methods. However, by seed-priming there was an increase in plant biomass by 5–7% compared to seed coating. Number of nodules and the nodule weight was similar by both seed coating and seed priming methods. Disease incidence was reduced up to 47% in treatments where captan (fungicide) or antagonistic Pseudomonas sp. CDB 35 was applied. Increase in shoot weight was 36% by seed coating with Rhizobium sp. IC 59 and Pseudomonas sp. CDB 35 when compared to captan application. Whereas by seed priming with IC 59 and CDB 35 increased shoot weight by 3 and 39% increase in nodulation was observed.
African Journal of Biotechnology | 2012
Subramaniam Gopalakrishnan; C. L. Laxmipathi Gowda; M. Prabhakar Reddy; G. V. Ranga Rao; Pagidi Humayun; Vadlamudi Srinivas; C. Srinivas; Om Rupela
Potability of drinking water from various sources at the campus of International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India had been assessed for 17 years (1994 to 2010). All four sources of drinking water at ICRISAT, including Manjeera water (Municipal corporation supplied drinking water), borewell 1, borewell 2 and ICRISAT water (mixture of both Manjeera as well as borewells after treatment), were tested for their potability once in two months by most probable number (MPN) method. The results indicated that water from borewells were not safe to drink without treatment as Escherichia coli was found in 10 and 12 years out of 17 tested years for bore wells 1 and 2, respectively. Manjeera water samples were also found unsafe in two out of the 17 years, whereas ICRISAT water was found safe to drink throughout the study period. This study indicated that even deep borewells (of about 135 ft) can get contaminated, and its water is not safe to drink without treatment, and an additional treatment of municipal water supply is required in order to have safe drinking water. Keywords: Potability, drinking water, Escherichia coli , borewell water, municipal water
Microbiological Research | 2008
B. Hameeda; G. Harini; Om Rupela; S.P. Wani .; Gopal Reddy
Crop Protection | 2011
Subramaniam Gopalakrishnan; S. Pande; Mamta Sharma; Pagidi Humayun; Bandru Keerthi Kiran; Dasyam Sandeep; Meesala Sree Vidya; Kanala Deepthi; Om Rupela
Collaboration
Dive into the Om Rupela's collaboration.
International Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputsInternational Crops Research Institute for the Semi-Arid Tropics
View shared research outputs