Omar Aziz
Huazhong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Omar Aziz.
Ecotoxicology and Environmental Safety | 2018
Muhammad Riaz; Lei Yan; Xiuwen Wu; Saddam Hussain; Omar Aziz; Muhammad Imran; Muhammad Rana; Cuncang Jiang
Aluminum (Al) toxicity is a major restriction for crops production on acidic soils. The primary symptom of aluminum toxicity is visible in the roots of plants. Recently, several studies reported the alleviation of Al toxicity by the application of Boron (B), however, the information how B alleviates Al toxicity is not well understood. Thus, we investigated the ameliorative response of B on Al-induced growth inhibition, oxidative damages, and variations in the cell wall components in trifoliate orange roots. The results indicated that plants under Al stress experienced a substantial decrement in root length and overall plant growth. The supply of B improved the root elongation by eliminating oxidative stress, membrane peroxidation, membrane leakage, and cell death produced under Al toxicity. Moreover, accumulation of Al on the cell wall and alteration in the cell wall components might be one of the causes resulting in the quick inhibition of root elongation under B-starvation circumstances by providing susceptible negative charges on pectin matrix for binding of Al. The results provide a useful understanding of the insight into mechanisms of B-induced mitigation of Al toxicity especially in the trifoliate orange that might be helpful in the production of crops on acidic soils.
Environmental Technology | 2016
Muhammad Rizwan; Muhammad Imtiaz; Muhammad Afzal Chhajro; Guoyong Huang; Qingling Fu; Jun Zhu; Omar Aziz; Hongqing Hu
ABSTRACT Soil contamination with heavy metals has become a global environmental health concern. In the present study, European Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) techniques were used to evaluate the Pb and Cu subsequent transformations, immobilizing impact of pyrolytic and non-pyrolytic rice and castor straws and their efficiency to reduce the metals mobility and leachability in the polluted soil. Obtained results highlight the potential of biochar over non-pyrolytic residues to enhance the immobilization of Pb and Cu in the soil. Castor leaves-derived biochar (CLB), castor stem-derived biochar (CSB), and rice straw-derived biochar (RSB) prominently decreased the mobility (acid-soluble fraction) of Pb 49.8%, 31.1%, and 31.9%, respectively, while Cu decreased 15.8%, 11.5%, and 12%, respectively, as compare to control. Sequential extraction showed that biochar treatments prominently modified the proportioning of Pb and Cu from acid soluble to a less bioavailable fraction and increased the geochemical stability in the polluted soil as compared to relative feedstocks as well as the controlled soil. Additionally, the soil pH increased markedly after the addition of biochar. Compared with control, the TCLP-extractable Pb and Cu were reduced to 29.2–41.4% and 5.7–22.8% from the soil respectively by the application of CLB. The immobilization and reduction in leachability of Pb and Cu were correlated with the soil pH. The biochar effect on the Pb immobilization was much better as compared to Cu in co-contaminated soil. Overall addition of CLB offered the best results and could be effective in both Pb and Cu immobilization thereby reducing their mobility and bioavailability in the co-contaminated soil.
Bulletin of Environmental Contamination and Toxicology | 2018
Sajid Mehmood; Muhammad Rizwan; Saqib Bashir; Allah Ditta; Omar Aziz; Li Zhe Yong; Zhihua Dai; Muhammad Akmal; Waqas Ahmed; Muhammad Adeel; Muhammad Imtiaz; Shuxin Tu
A variety of remediation approaches have been applied to the heavy metals-contaminated soils, however, the immobilization of metals in co-contaminated soils still not cleared. Therefore, an incubation study was conducted to evaluate the instantaneous effects of different concentrations of biochar (BC), slag (SL) and Fe–Mn ore (FMO) on immobilization of Pb and Cd through the Toxicity Characteristic Leaching Procedure (TCLP) by following the the European Community Bureau of Reference (BCR), CaCl2 and NH4NO3. The sequential extraction of BCR showed decrease in acid soluble fractions, while the residual proportions of Pb and Cd were enhanced with increasing concentrations of SL and BC. Addition of BC significantly lowered the extractable fractions of both metals by TCLP, NH4NO3 and CaCl2 as compared to SL and FMO. Among all amendments, BC incorporation into co-contaminated soil offered promising results for Pb and Cd immobilization. Overall, all amendments showed positive and long-term impact on the reclamation of co-contaminated soil with heavy metals and could deserve advance monitoring studies on a field scale.
Chemosphere | 2018
Muhammad Rizwan; Mohammad Golam Mostofa; Muhammad Zulfiqar Ahmad; Muhammad Imtiaz; Sajid Mehmood; Muhammad Adeel; Zhihua Dai; Zheyong Li; Omar Aziz; Yihui Zhang; Shuxin Tu
Soil contamination with nickel (Ni) is a persistent threat to crop production worldwide. The present study examined the putative roles of nitric oxide (NO) in improving Ni-tolerance in rice. Our findings showed that application of exogenous sodium nitroprusside (SNP), a NO donor, significantly improved the growth performance of rice seedlings when grown under excessive Ni. The enhanced Ni-tolerance of rice prompted by SNP could be ascribed to its ability to regulate Ni uptake, decrease Ni-induced oxidative stress as evidenced by reduced levels of hydrogen peroxide, malondialdehyde, and electrolyte leakage in Ni-stressed plants. The positive roles of NO against Ni-toxicity also reflected through its protective effects on photosynthetic pigments, soluble proteins and proline. SNP also boosted antioxidant capacity in Ni-stressed plants by maintaining increased levels of ascorbate, enhanced activities of ROS-detoxifying enzymes, particularly peroxidase (POD) and catalase (CAT) in both roots and shoots compared with Ni-stressed alone plants. Moreover, SNP treatment also upregulated the transcript levels of CAT, POD, ascorbate peroxidase, glutathione reductase and superoxide dismutase genes in shoots under Ni-stress. Using different sulfide compounds and NO scavenger cPTIO, we also provided evidence that NO, rather than other byproducts of SNP, contributed to the improved performance of rice seedlings under Ni-stress. Collectively, our results conclude that exogenous SNP-mediated modulation of endogenous NO enhanced rice tolerance to Ni-stress by restricting Ni accumulation, maintaining photosynthetic performance and reducing oxidative damage through improved antioxidant system, thereby suggesting NO as an effective stress regulator in mitigating Ni-toxicity in economically important rice, and perhaps in other crop plants.
Journal of Plant Interactions | 2018
Muhammad Riaz; Xiuwen Wu; Lei Yan; Saddam Hussain; Omar Aziz; Asad Shah; Cuncang Jiang
ABSTRACT Aluminum (Al) toxicity is one of the major problems affecting crop production. Boron (B) is an essential micronutrient for higher plants. In the present study, we investigated the alleviation of Al-induced inhibition of root growth and physiological characteristics by B in rapeseed. The rapeseeds were grown in different Al concentrations (0 and 300 μM), and for every concentration, two B treatments (2.5 and 25 µM as H3BO3) were applied. The results showed that Al toxicity under low B drastically inhibited root growth. The supply of B improved root length, photosynthesis, root activity, total chlorophyll by 60.15%, 104.7%, 102%, and 106.3%, respectively under Al toxicity. This further resulted in improvement of peroxidase, catalase, and ascorbate peroxidase activities while decreasing malondialdehyde, H2O2, and Al contents in roots and leaves. It might be supposed that B alleviates Al toxicity by less mobilization of Al in plant parts and through improving antioxidant enzyme activities.
Plant Physiology and Biochemistry | 2018
Sajid Mehmood; Dawood Anser Saeed; Muhammad Rizwan; Mohammad Nauman Khan; Omar Aziz; Saqib Bashir; Muhammad Ibrahim; Allah Ditta; Muhammad Akmal; Muhammad Ali Mumtaz; Waqas Ahmed; Sana Irshad; Muhammad Imtiaz; Shuxin Tu; Asia Shaheen
Soil co-contamination with lead (Pb) and cadmium (Cd) is a tenacious risk to crop production globally. The current experiment observed the roles of amendments [biochar (BC), slag (SL), and ferrous manganese ore (FMO)] for enhancing Pb and Cd tolerance in sesame (Sesamum indicum L.). Our results revealed that application of amendments significantly enhanced the nutrient level of sesame seedlings developed under extreme Pb and Cd conditions. The higher Pb and Cd-tolerance in sesame encouraged by amendments might be credited to its capability to restrict Pb and Cd uptake and decreased oxidative damage induced by Pb and Cd that is also demonstrated by lesser production of hydrogen peroxide (H2O2), malondialdehyde (MDA), and reduced electrolyte leakage (EL) in plant biomass. The added amendments relieved Pb and Cd toxicity and improved photosynthetic pigments, soluble protein, and proline content. Not only this amendments also decreased the antioxidant bulk, such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in sesame plants compared to control when exposed to Pb and Cd. Moreover, the added amendments = down-regulated the genes expression which regulate the SOD, POD, and CAT activity in sesame under Pb and Cd-stress. Furthermore, supplementation of amendments to the soil, reduced the bio accessibility (SBET), leachability (TCLP), and mobility (CaCl2) of Pb and Cd. Collectively, our findings conclude that the application of amendments enhanced sesame tolerance to Pb and Cd stress by restricting Pb and Cd accumulation, maintained photosynthetic presentation and dropped oxidative loss through enhanced antioxidant system, thus signifying amendments as an operational stress regulators in modifying Pb and Cd-toxicity that is highly important economically in all crops including sesame.
Journal of Soils and Sediments | 2018
Saqib Bashir; Muhammad Shaaban; Qaiser Hussain; Sajid Mehmood; Jun Zhu; Qingling Fu; Omar Aziz; Hongqing Hu
PurposeSoil contamination with heavy metals, such as Cd and Pb, has caused severe health and environmental risks all over the world. Possible eco-friendly solutions for Cd and Pb immobilization were required to reduce its mobility through various cost-effective amendments.Materials and methodsA laboratory incubation study was conducted to assess the efficiency of biochar (BC), zeolite (ZE), and rock phosphate (RP) as passivators for the stabilization of Cd and Pb in paddy soil as well as soil microbial biomass. Various extraction techniques were carried out: a sequential extraction procedure, the European Community Bureau of Reference (BCR), toxicity characteristic leaching procedure (TCLP) test, and single extraction with CaCl2. The impact of passivators on soil pH, dissolved organic carbon (DOC), and microbial biomass (carbon, nitrogen, and phosphorus) was examined in the metal contaminated soil.Results and discussionThe results showed that the exchangeable portion of Cd in soil was significantly reduced by 34.8, 21.6, and 18.8% with ZE, RP, and BC at a 3% application rate, respectively. A similar tendency of reduction in Pb soluble portion was observed by ZE (9.6%), RP (20%), and BC (21.4%) at a 3% application rate. Moreover, the TCLP leachate of Cd and Pb was apparently reduced by 17 and 30.3% with BC at a 3% application dose, respectively, when compared to the control. Soil pH, nutrients, and microbial biomass C, N, and P were significantly increased with the addition of BC, RP, and ZE passivators.ConclusionsThe results showed that the incorporation of BC, ZE, and RP significantly reduced the Cd and Pb mobility in paddy soil as well as enhanced soil nutrients and microbial biomass. Overall, among all the amendments, rice straw derived-BC performed better for Cd and Pb immobilization in paddy soil.
Environmental Toxicology and Pharmacology | 2018
Muhammad Imtiaz; Muhammad Adnan Mushtaq; Muhammad Amjad Nawaz; Muhammad Ashraf; Muhammad Rizwan; Sajid Mehmood; Omar Aziz; Muhammad Safiullah Virk; Qaiser Shakeel; Raina Ijaz; Vasilis P. Androutsopoulos; Aristides M. Tsatsakis; Michael D. Coleman
The present study aimed to elucidate the photosynthetic performance, antioxidant enzyme activities, anthocyanin contents, anthocyanin biosynthetic gene expression, and vanadium uptake in mustard genotypes (purple and green) that differ in photosynthetic capacity under vanadium stress. The results indicated that vanadium significantly reduced photosynthetic activity in both genotypes. The activities of the antioxidant enzymes were increased significantly in response to vanadium in both genotypes, although the purple exhibited higher. The anthocyanin contents were also reduced under vanadium stress. The anthocyanin biosynthetic genes were highly expressed in the purple genotype, notably the genes TT8, F3H, and MYBL2 under vanadium stress. The results indicate that induction of TT8, F3H, and MYBL2 genes was associated with upregulation of the biosynthetic genes required for higher anthocyanin biosynthesis in purple compared with the green mustard. The roots accumulated higher vanadium than shoots in both mustard genotypes. The results indicate that the purple mustard had higher vanadium tolerance.
Environmental Science and Pollution Research | 2018
Omar Aziz; Saddam Hussain; Muhammad Rizwan; Muhammad Riaz; Saqib Bashir; Lirong Lin; Sajid Mehmood; Muhammad Imran; Rizwan Yaseen; Guoan Lu
The original publication of this paper contains a mistake.
Ecotoxicology and Environmental Safety | 2018
Muhammad Riaz; Lei Yan; Xiuwen Wu; Saddam Hussain; Omar Aziz; Cuncang Jiang
Aluminum toxicity limits the plant growth by inducing inhibition of root elongation. Although several mechanisms have been proposed regarding the phytotoxic effects of aluminum on inhibition of root elongation; the primary causes of aluminum induced root inhibition and its mitigation by boron (B) are still elusive. The present study was carried out to explore the mechanisms of B induced mitigation of aluminum toxicity and to investigate the changes in well wall structure under aluminum toxicity coupled with the techniques of confocal laser microscope, lumogallion and transmission electron microscope. The results revealed that aluminum toxicity severely hampered the root elongation and plant biomass. Moreover, alteration in subcellular structure were observed under aluminum toxicity, however, such negative effects were further exacerbated with B deficiency. Aluminum toxicity indicated disorganized distribution of HG (homogalacturonan) epitopes with higher accumulation of apoplastic aluminum. Nevertheless, B supply improved root elongation, and reduced the aluminum uptake. Taken together, it is concluded that B application can reduce aluminum toxicity and improve root elongation by decreasing Al3+ accumulation to cell wall, alteration in the cell wall structure and reducing the distribution of HG epitopes in the roots of trifoliate (Poncirus trifoliate) orange.