Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Omar E. Franco is active.

Publication


Featured researches published by Omar E. Franco.


Cancer Research | 2007

Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium.

Mingfang Ao; Omar E. Franco; Dean Park; Dayanidhi Raman; Karin Williams; Simon W. Hayward

The present study explores the mechanisms by which human prostatic carcinoma-associated fibroblasts (CAF) induce tumorigenesis in initiated but nonmalignant human prostatic epithelial cells (BPH-1). CAF express elevated levels of both transforming growth factor-beta1 (TGF-beta1) and stromal cell-derived factor-1 (SDF-1/CXCL12). TGF-beta inhibits the growth of BPH-1 cells in vitro, but was found to be necessary for the tumorigenic response to CAF. This counterintuitive result suggested that the TGF-beta signaling system was involved in other processes relating to tumorigenesis. The SDF-1 receptor, CXCR4, is expressed at low levels in benign prostate tissue and in BPH-1 cells in culture. However, CXCR4 levels increase during prostate cancer progression. CXCR4 was found to be induced and localized to the cell membrane in BPH1 cells by CAF-conditioned medium and by CAF cells in tissue recombinants. TGF-beta was both necessary and sufficient to allow the detection of membrane-localized CXCR4 in BPH1 cells. Suppression of epithelial cell CXCR4 expression abrogated the tumorigenic response to CAF. SDF-1, secreted by CAF, acts via the TGF-beta-regulated CXCR4 to activate Akt in the epithelial cells. This mechanism elicits tumorigenesis and obviates the growth-inhibitory effects of TGF-beta. Thus, tumor stroma can contribute to carcinogenesis through synergism between TGF-beta, SDF-1, and CXCR4. These experiments suggest mechanisms by which TGF-beta can shift its role from an inhibitor to a promoter of proliferation during tumor progression. Both the TGF-beta and SDF-1 pathways are targets of drug discovery efforts; these data suggest potential benefits in the cotargeting of these pathways.


Cancer Research | 2005

Identification of SFRP1 as a Candidate Mediator of Stromal-to-Epithelial Signaling in Prostate Cancer

Margaret S. Joesting; Steve Perrin; Brian Elenbaas; Stephen E. Fawell; Jeffrey S. Rubin; Omar E. Franco; Simon W. Hayward; Gerald R. Cunha; Paul C. Marker

Genetic changes in epithelial cells initiate the development of prostatic adenocarcinomas. As nascent tumors grow and undergo progression, epithelial tumor cells are intimately associated with stromal cells. Stromal cells within the tumor microenvironment acquire new properties, including the capacity to promote phenotypic and genetic progression in adjacent epithelial cells. Affymetrix microarrays were used to identify 119 genes differentially expressed between normal-derived and carcinoma-derived prostatic stromal cells. These included 31 genes encoding extracellular proteins that may act as stromal-to-epithelial paracrine signals. Further investigation of one of these genes, secreted frizzled related protein 1 (SFRP1), revealed that its expression parallels prostatic growth with high expression during prostatic development, low expression in the adult prostate, and elevated expression in prostatic tumor stroma. In addition, as prostatic epithelial cells progressed to a tumorigenic state under the influence of tumor stroma, SFRP1 became overexpressed in the progressed epithelial cells. To further understand the roles of SFRP1 in the prostate, we tested the affects of increased SFRP1 levels on prostatic tissues and cells. Treatment of developing prostates with SFRP1 in culture led to increased organ growth. Treatment of a human prostatic epithelial cell line with SFRP1 led to increased proliferation, decreased apoptosis, and decreased signaling through the Wnt/beta-catenin pathway in vitro and increased proliferation in vivo. These data suggest that overexpression of SFRP1 by prostatic tumor stroma may account for the previously reported capacity of prostatic tumor stroma to provide a pro-proliferative paracrine signal to adjacent epithelial cells.


Cancer Research | 2011

Altered TGF-β Signaling in a Subpopulation of Human Stromal Cells Promotes Prostatic Carcinogenesis

Omar E. Franco; Ming Jiang; Douglas W. Strand; James L. Peacock; Suzanne Fernandez; Roger S. Jackson; Monica P. Revelo; Neil A. Bhowmick; Simon W. Hayward

Carcinoma-associated fibroblasts (CAF) play a critical role in malignant progression. Loss of TGF-β receptor II (TGFβR2) in the prostate stroma is correlated with prostatic tumorigenesis. To determine the mechanisms by which stromal heterogeneity because of loss of TGFβR2 might contribute to cancer progression, we attenuated transforming growth factor beta (TGF-β) signaling in a subpopulation of immortalized human prostate fibroblasts in a model of tumor progression. In a tissue recombination model, loss of TGFβR2 function in 50% of the stromal cell population resulted in malignant transformation of the nontumorigenic human prostate epithelial cell line BPH1. Mixing fibroblasts expressing the empty vector and dominant negative TGFβR2 increased the expression of markers of myofibroblast differentiation [coexpression of vimentin and alpha smooth muscle actin (αSMA)] through elevation of TGF-β1 and activation of the Akt pathway. In combination, these two populations of stromal cells recapitulated the tumor inductive activity of CAFs. TGFβR2 activity in mixed stromal cell populations cultured in vitro caused secretion of factors that are known to promote tumor progression, including TGF-β1, SDF1/CXCL12, and members of the fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) families. In vivo, tissue recombination of fibroblasts overexpressing TGF-β1 and SDF1/CXCL12 not only induced transformation of BPH1 cells, but also promoted a robust growth of highly invasive cells, similar to effects produced by CAFs. While the precise nature and/or origin of the particular stromal cell populations in vivo remain unknown, these findings strongly link heterogeneity in TGF-β signaling to tumor promotion by tumor stromal cells.


Oncogene | 2010

Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma.

Jie Wang; Jongchan Kim; Meejeon Roh; Omar E. Franco; Simon W. Hayward; Marcia L. Wills; Sarki A. Abdulkadir

The oncogenic PIM1 kinase has been implicated as a cofactor for c-MYC in prostate carcinogenesis. In this study, we show that in human prostate tumors, coexpression of c-MYC and PIM1 is associated with higher Gleason grades. Using a tissue recombination model coupled with lentiviral-mediated gene transfer we find that Pim1 is weakly oncogenic in naive adult mouse prostatic epithelium. However, it cooperates dramatically with c-MYC to induce prostate cancer within 6-weeks. Importantly, c-MYC/Pim1 synergy is critically dependent on Pim1 kinase activity. c-MYC/Pim1 tumors showed increased levels of the active serine-62 (S62) phosphorylated form of c-MYC. Grafts expressing a phosphomimetic c-MYCS62D mutant had higher rates of proliferation than grafts expressing wild type c-MYC but did not form tumors like c-MYC/Pim1 grafts, indicating that Pim1 cooperativity with c-MYC in vivo involves additional mechanisms other than enhancement of c-MYC activity by S62 phosphorylation. c-MYC/Pim1-induced prostate carcinomas show evidence of neuroendocrine (NE) differentiation. Additional studies, including the identification of tumor cells coexpressing androgen receptor and NE cell markers synaptophysin and Ascl1 suggested that NE tumors arose from adenocarcinoma cells through transdifferentiation. These results directly show functional cooperativity between c-MYC and PIM1 in prostate tumorigenesis in vivo and support efforts for targeting PIM1 in prostate cancer.


Oncogene | 2012

Identification of stromally expressed molecules in the prostate by tag-profiling of cancer-associated fibroblasts, normal fibroblasts and fetal prostate

B A Orr; Antony C.P. Riddick; Grant D. Stewart; Richard A. Anderson; Omar E. Franco; Simon W. Hayward; Axel A. Thomson

The stromal microenvironment has key roles in prostate development and cancer, and cancer-associated fibroblasts (CAFs) stimulate tumourigenesis via several mechanisms including the expression of pro-tumourigenic factors. Mesenchyme (embryonic stroma) controls prostate organogenesis, and in some circumstances can re-differentiate prostate tumours. We have applied next-generation Tag profiling to fetal human prostate, normal human prostate fibroblasts (NPFs) and CAFs to identify molecules expressed in prostatic stroma. Comparison of gene expression profiles of a patient-matched pair of NPFs vs CAFs identified 671 transcripts that were enriched in CAFs and 356 transcripts whose levels were decreased, relative to NPFs. Gene ontology analysis revealed that CAF-enriched transcripts were associated with prostate morphogenesis and CAF-depleted transcripts were associated with cell cycle. We selected mRNAs to follow-up by comparison of our data sets with published prostate cancer fibroblast microarray profiles as well as by focusing on transcripts encoding secreted and peripheral membrane proteins, as well as mesenchymal transcripts identified in a previous study from our group. We confirmed differential transcript expression between CAFs and NPFs using QrtPCR, and defined protein localization using immunohistochemistry in fetal prostate, adult prostate and prostate cancer. We demonstrated that ASPN, CAV1, CFH, CTSK, DCN, FBLN1, FHL1, FN, NKTR, OGN, PARVA, S100A6, SPARC, STC1 and ZEB1 proteins showed specific and varied expression patterns in fetal human prostate and in prostate cancer. Colocalization studies suggested that some stromally expressed molecules were also expressed in subsets of tumour epithelia, indicating that they may be novel markers of EMT. Additionally, two molecules (ASPN and STC1) marked overlapping and distinct subregions of stroma associated with tumour epithelia and may represent new CAF markers.


Cancer Research | 2011

Role for Stromal Heterogeneity in Prostate Tumorigenesis

Maria Kiskowski; Jackson, Roger S., nd; Jheelam Banerjee; Xiaohong Li; Minchul Kang; Juan M. Iturregui; Omar E. Franco; Simon W. Hayward; Neil A. Bhowmick

Prostate cancer develops through a stochastic mechanism whereby precancerous lesions on occasion progress to multifocal adenocarcinoma. Analysis of human benign and cancer prostate tissues revealed heterogeneous loss of TGF-β signaling in the cancer-associated stromal fibroblastic cell compartment. To test the hypothesis that prostate cancer progression is dependent on the heterogeneous TGF-β responsive microenvironment, a tissue recombination experiment was designed in which the ratio of TGF-β responsive and nonresponsive stromal cells was varied. Although 100% TGF-β responsive stromal cells supported benign prostate growth and 100% TGF-β nonresponsive stromal cells resulted in precancerous lesions, only the mixture of TGF-β responsive and nonresponsive stromal cells resulted in adenocarcinoma. A computational model was used to resolve a mechanism of tumorigenic progression in which proliferation and invasion occur in two independent steps mediated by distinct stromally derived paracrine signals produced by TGF-β nonresponsive and responsive stromal cells. Complex spatial relationships of stromal and epithelial cells were incorporated into the model on the basis of experimental data. Informed by incorporation of experimentally derived spatial parameters for complex stromal-epithelial relationships, the computational model indicated ranges for the relative production of paracrine factors by each cell type and provided bounds for the diffusive range of the molecules. Because SDF-1 satisfied model predictions for an invasion-promoting paracrine factor, a more focused computational model was subsequently used to investigate whether SDF-1 was the invasion signal. Simulations replicating SDF-1 expression data revealed the requirement for cooperative SDF-1 expression, a prediction supported biologically by heterotypic stromal interleukin-1β signaling between fibroblastic cell populations. The cancer stromal field effect supports a functional role for the unaltered fibroblasts as a cooperative mediator of cancer progression.


European Urology | 2013

A Novel Model of Urinary Tract Differentiation, Tissue Regeneration, and Disease: Reprogramming Human Prostate and Bladder Cells into Induced Pluripotent Stem Cells

Mohammad Moad; Deepali Pal; Anastasia Hepburn; Stuart Williamson; Laura Wilson; Majlinda Lako; Lyle Armstrong; Simon W. Hayward; Omar E. Franco; Justin M. Cates; Sarah E. Fordham; Stefan Przyborski; Jane Carr-Wilkinson; Craig N. Robson; Rakesh Heer

Background Primary culture and animal and cell-line models of prostate and bladder development have limitations in describing human biology, and novel strategies that describe the full spectrum of differentiation from foetal through to ageing tissue are required. Recent advances in biology demonstrate that direct reprogramming of somatic cells into pluripotent embryonic stem cell (ESC)-like cells is possible. These cells, termed induced pluripotent stem cells (iPSCs), could theoretically generate adult prostate and bladder tissue, providing an alternative strategy to study differentiation. Objective To generate human iPSCs derived from normal, ageing, human prostate (Pro-iPSC), and urinary tract (UT-iPSC) tissue and to assess their capacity for lineage-directed differentiation. Design, setting, and participants Prostate and urinary tract stroma were transduced with POU class 5 homeobox 1 (POU5F1; formerly OCT4), SRY (sex determining region Y)-box 2 (SOX2), Kruppel-like factor 4 (gut) (KLF4), and v-myc myelocytomatosis viral oncogene homolog (avian) (MYC, formerly C-MYC) genes to generate iPSCs. Outcome measurements and statistical analysis The potential for differentiation into prostate and bladder lineages was compared with classical skin-derived iPSCs. The student t test was used. Results and limitations Successful reprogramming of prostate tissue into Pro-iPSCs and bladder and ureter into UT-iPSCs was demonstrated by characteristic ESC morphology, marker expression, and functional pluripotency in generating all three germ-layer lineages. In contrast to conventional skin-derived iPSCs, Pro-iPSCs showed a vastly increased ability to generate prostate epithelial-specific differentiation, as characterised by androgen receptor and prostate-specific antigen induction. Similarly, UT-iPSCs were shown to be more efficient than skin-derived iPSCs in undergoing bladder differentiation as demonstrated by expression of urothelial-specific markers: uroplakins, claudins, and cytokeratin; and stromal smooth muscle markers: α-smooth-muscle actin, calponin, and desmin. These disparities are likely to represent epigenetic differences between individual iPSC lines and highlight the importance of organ-specific iPSCs for tissue-specific studies. Conclusions IPSCs provide an exciting new model to characterise mechanisms regulating prostate and bladder differentiation and to develop novel approaches to disease modelling. Regeneration of bladder cells also provides an exceptional opportunity for translational tissue engineering.


Cancer Research | 2007

Tissue-specific consequences of cyclin D1 overexpression in prostate cancer progression.

Yue He; Omar E. Franco; Ming Jiang; Karin Williams; Harold D. Love; Ilsa Coleman; Peter S. Nelson; Simon W. Hayward

The cyclin D1 oncogene encodes the regulatory subunit of a holoenzyme that phosphorylates and inactivates the Rb protein and promotes progression through G(1) to S phase of the cell cycle. Several prostate cancer cell lines and a subset of primary prostate cancer samples have increased cyclin D1 protein expression. However, the relationship between cyclin D1 expression and prostate tumor progression has yet to be clearly characterized. This study examined the effects of manipulating cyclin D1 expression in either human prostatic epithelial or stromal cells using a tissue recombination model. The data showed that overexpression of cyclin D1 in the initiated BPH-1 cell line increased cell proliferation rate but did not elicit tumorigenicity in vivo. However, overexpression of cyclin D1 in normal prostate fibroblasts (NPF) that were subsequently recombined with BPH-1 did induce malignant transformation of the epithelial cells. The present study also showed that recombination of BPH-1 + cyclin D1-overexpressing fibroblasts (NPF(cyclin D1)) resulted in permanent malignant transformation of epithelial cells (BPH-1(NPF-cyclin D1) cells) similar to that seen with carcinoma-associated fibroblasts (CAF). Microarray analysis showed that the expression profiles between CAFs and NPF(cyclin D1) cells were highly concordant including cyclin D1 up-regulation. These data indicated that the tumor-promoting activity of cyclin D1 may be tissue specific.


Journal of Clinical Investigation | 2012

Nkx3.1 and Myc crossregulate shared target genes in mouse and human prostate tumorigenesis

Philip D. Anderson; Sydika A. McKissic; Monica Logan; Meejeon Roh; Omar E. Franco; Jie Wang; Irina Doubinskaia; Riet van der Meer; Simon W. Hayward; Christine M. Eischen; Isam Eldin Eltoum; Sarki A. Abdulkadir

Cooperativity between oncogenic mutations is recognized as a fundamental feature of malignant transformation, and it may be mediated by synergistic regulation of the expression of pro- and antitumorigenic target genes. However, the mechanisms by which oncogenes and tumor suppressors coregulate downstream targets and pathways remain largely unknown. Here, we used ChIP coupled to massively parallel sequencing (ChIP-seq) and gene expression profiling in mouse prostates to identify direct targets of the tumor suppressor Nkx3.1. Further analysis indicated that a substantial fraction of Nkx3.1 target genes are also direct targets of the oncoprotein Myc. We also showed that Nkx3.1 and Myc bound to and crossregulated shared target genes in mouse and human prostate epithelial cells and that Nkx3.1 could oppose the transcriptional activity of Myc. Furthermore, loss of Nkx3.1 cooperated with concurrent overexpression of Myc to promote prostate cancer in transgenic mice. In human prostate cancer patients, dysregulation of shared NKX3.1/MYC target genes was associated with disease relapse. Our results indicate that NKX3.1 and MYC coregulate prostate tumorigenesis by converging on, and crossregulating, a common set of target genes. We propose that coregulation of target gene expression by oncogenic/tumor suppressor transcription factors may represent a general mechanism underlying the cooperativity of oncogenic mutations during tumorigenesis.


PLOS ONE | 2008

A Role for Polyploidy in the Tumorigenicity of Pim-1-Expressing Human Prostate and Mammary Epithelial Cells

Meejeon Roh; Omar E. Franco; Simon W. Hayward; Riet van der Meer; Sarki A. Abdulkadir

Background Polyploidy is a prominent feature of many human cancers, and it has long been hypothesized that polyploidy may contribute to tumorigenesis by promoting genomic instability. In this study, we investigated whether polyploidy per se induced by a relevant oncogene can promote genomic instability and tumorigenicity in human epithelial cells. Principal Findings When the oncogenic serine-threonine kinase Pim-1 is overexpressed in immortalized, non-tumorigenic human prostate and mammary epithelial cells, these cells gradually converted to polyploidy and became tumorigenic. To assess the contribution of polyploidy to tumorigenicity, we obtained sorted, matched populations of diploid and polyploid cells expressing equivalent levels of the Pim-1 protein. Spectral karyotyping revealed evidence of emerging numerical and structural chromosomal abnormalities in polyploid cells, supporting the proposition that polyploidy promotes chromosomal instability. Polyploid cells displayed an intact p53/p21 pathway, indicating that the viability of polyploid cells in this system is not dependent on the inactivation of the p53 signaling pathway. Remarkably, only the sorted polyploid cells were tumorigenic in vitro and in vivo. Conclusions Our results support the notion that polyploidy can promote chromosomal instability and the initiation of tumorigenesis in human epithelial cells.

Collaboration


Dive into the Omar E. Franco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas W. Strand

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Susan E. Crawford

NorthShore University HealthSystem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil A. Bhowmick

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Williams

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge