Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Omar Khwaja is active.

Publication


Featured researches published by Omar Khwaja.


Journal of Medical Genetics | 2009

Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders

David T. Miller; Yiping Shen; Lauren A. Weiss; Joshua M. Korn; Irina Anselm; Carolyn Bridgemohan; Gerald F. Cox; Hope Dickinson; Jennifer K. Gentile; David J. Harris; Vijay Hegde; Rachel Hundley; Omar Khwaja; Sanjeev V. Kothare; Christina Luedke; Ramzi Nasir; Annapurna Poduri; Kiran Prasad; Peter Raffalli; Ann Reinhard; Sharon E. Smith; Magdi M. Sobeih; Janet S. Soul; Joan M. Stoler; Masanori Takeoka; Wen-Hann Tan; Joseph V. Thakuria; Robert Wolff; Roman Yusupov; James F. Gusella

Background: Segmental duplications at breakpoints (BP4–BP5) of chromosome 15q13.2q13.3 mediate a recurrent genomic imbalance syndrome associated with mental retardation, epilepsy, and/or electroencephalogram (EEG) abnormalities. Patients: DNA samples from 1445 unrelated patients submitted consecutively for clinical array comparative genomic hybridisation (CGH) testing at Children’s Hospital Boston and DNA samples from 1441 individuals with autism from 751 families in the Autism Genetic Resource Exchange (AGRE) repository. Results: We report the clinical features of five patients with a BP4–BP5 deletion, three with a BP4–BP5 duplication, and two with an overlapping but smaller duplication identified by whole genome high resolution oligonucleotide array CGH. These BP4–BP5 deletion cases exhibit minor dysmorphic features, significant expressive language deficits, and a spectrum of neuropsychiatric impairments that include autism spectrum disorder, attention deficit hyperactivity disorder, anxiety disorder, and mood disorder. Cognitive impairment varied from moderate mental retardation to normal IQ with learning disability. BP4–BP5 covers ∼1.5 Mb (chr15:28.719–30.298 Mb) and includes six reference genes and 1 miRNA gene, while the smaller duplications cover ∼500 kb (chr15:28.902–29.404 Mb) and contain three reference genes and one miRNA gene. The BP4–BP5 deletion and duplication events span CHRNA7, a candidate gene for seizures. However, none of these individuals reported here have epilepsy, although two have an abnormal EEG. Conclusions: The phenotype of chromosome 15q13.2q13.3 BP4–BP5 microdeletion/duplication syndrome may include features of autism spectrum disorder, a variety of neuropsychiatric disorders, and cognitive impairment. Recognition of this broader phenotype has implications for clinical diagnostic testing and efforts to understand the underlying aetiology of this syndrome.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome

Omar Khwaja; Eugenia Ho; Katherine V. Barnes; Heather M. O’Leary; Luis M. Pereira; Yaron Finkelstein; Charles A. Nelson; Vanessa Vogel-Farley; Geneva DeGregorio; Ingrid A. Holm; Umakanth Khatwa; Kush Kapur; Mark E. Alexander; Deirdre M. Finnegan; Nicole G. Cantwell; Alexandra C. Walco; Leonard Rappaport; Matt Gregas; Raina N. Fichorova; Michael Shannon; Mriganka Sur; Walter E. Kaufmann

Significance This paper provides unique insights into mechanism-based therapeutics for Rett syndrome (RTT), a devastating neurodevelopmental disorder. This clinical trial was based on pioneer preclinical work from the laboratory of M.S. Outcome measures include clinical instruments, standardized behavioral measures, and biomarkers, the latter being not only objective but also applicable to experimental studies. We believe this work will a have major impact on the understanding and treatment of RTT, as well as other neurodevelopmental disorders. Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder mainly affecting females and is associated with mutations in MECP2, the gene encoding methyl CpG-binding protein 2. Mouse models suggest that recombinant human insulin-like growth factor 1 (IGF-1) (rhIGF1) (mecasermin) may improve many clinical features. We evaluated the safety, tolerability, and pharmacokinetic profiles of IGF-1 in 12 girls with MECP2 mutations (9 with RTT). In addition, we performed a preliminary assessment of efficacy using automated cardiorespiratory measures, EEG, a set of RTT-oriented clinical assessments, and two standardized behavioral questionnaires. This phase 1 trial included a 4-wk multiple ascending dose (MAD) (40–120 μg/kg twice daily) period and a 20-wk open-label extension (OLE) at the maximum dose. Twelve subjects completed the MAD and 10 the entire study, without evidence of hypoglycemia or serious adverse events. Mecasermin reached the CNS compartment as evidenced by the increase in cerebrospinal fluid IGF-1 levels at the end of the MAD. The drug followed nonlinear kinetics, with greater distribution in the peripheral compartment. Cardiorespiratory measures showed that apnea improved during the OLE. Some neurobehavioral parameters, specifically measures of anxiety and mood also improved during the OLE. These improvements in mood and anxiety scores were supported by reversal of right frontal alpha band asymmetry on EEG, an index of anxiety and depression. Our data indicate that IGF-1 is safe and well tolerated in girls with RTT and, as demonstrated in preclinical studies, ameliorates certain breathing and behavioral abnormalities.


Annals of Neurology | 2014

Copy number variation plays an important role in clinical epilepsy

Heather E. Olson; Yiping Shen; Jennifer Avallone; Beth Rosen Sheidley; Rebecca Pinsky; Ann M. Bergin; Gerard T. Berry; Frank H. Duffy; Yaman Z. Eksioglu; David J. Harris; Fuki M. Hisama; Eugenia Ho; Mira Irons; Christina M. Jacobsen; Philip James; Sanjeev V. Kothare; Omar Khwaja; Jonathan Lipton; Tobias Loddenkemper; Jennifer Markowitz; Kiran Maski; J.Thomas Megerian; Edward G. Neilan; Peter Raffalli; Michael Robbins; Amy E. Roberts; Eugene Roe; Caitlin K. Rollins; Mustafa Sahin; Dean Sarco

To evaluate the role of copy number abnormalities detectable using chromosomal microarray (CMA) testing in patients with epilepsy at a tertiary care center.


Developmental Medicine & Child Neurology | 2011

Spectrum of neurodevelopmental disabilities in children with cerebellar malformations

Marie-Eve Bolduc; Adré J. du Plessis; Nancy Sullivan; Omar Khwaja; Xun Zhang; Katherine V. Barnes; Richard L. Robertson; Catherine Limperopoulos

Aim  Advances in perinatal care and neuroimaging techniques have increased the detection of cerebellar malformations (CBMs) in the fetus and young infant. As a result, this has necessitated a greater understanding of the neurodevelopmental consequences of CBMs on child development. The aim of this study was to delineate the impact of CBMs on long‐term neurodevelopmental outcomes.


American Journal of Roentgenology | 2008

How Accurately Does Current Fetal Imaging Identify Posterior Fossa Anomalies

Catherine Limperopoulos; Richard L. Robertson; Omar Khwaja; Caroline D. Robson; Judy A. Estroff; Carole Barnewolt; Deborah Levine; Donna Morash; Luanne P. Nemes; Linda Zaccagnini; Adré J. du Plessis

OBJECTIVE The first objective of our study was to describe the prevalence and spectrum of posterior fossa anomalies over 5 years in a major fetal care center where the referral diagnosis (by fetal sonography) was investigated by fetal MRI and, if confirmed, by postnatal MRI if possible. The second objective was to assess the accuracy with which fetal MRI predicts postnatal MRI findings in this population. MATERIALS AND METHODS We retrospectively identified all cases of suspected fetal posterior fossa anomalies referred to our center from 2002 through 2006. We reviewed maternal, fetal, neonatal, and follow-up records of all cases and fetal and early postnatal imaging studies. RESULTS Of the 90 cases of suspected fetal posterior fossa anomalies (by fetal sonography) referred over the study period, 60 (67%) were confirmed by fetal MRI. Of 42 live-born infants, 39 (93%) underwent postnatal MRI. There was complete agreement in fetal and postnatal MRI diagnoses in 23 infants (59%). In 16 cases (41%), fetal and postnatal MRI diagnoses disagreed; postnatal MRI excluded fetal MRI diagnoses in six cases (15%) and revealed additional anomalies in 10 cases (26%). CONCLUSION Although a valuable adjunct to fetal sonography in cases of suspected posterior fossa anomaly, current fetal MRI, particularly in early gestation, has limitations in accurately predicting postnatal MRI abnormalities. Advancing the accuracy of MRI for the diagnosis of posterior fossa anomalies will require greater understanding of normal brain development and improved tissue resolution of fetal MRI. During the interim, our findings strongly support the need for postnatal MRI follow-up in cases with suspected posterior fossa anomalies by fetal MRI.


Epilepsia | 2012

Homozygous PLCB1 deletion associated with malignant migrating partial seizures in infancy.

Annapurna Poduri; Sameer S. Chopra; Edward G. Neilan; P. Christina Elhosary; Manju A. Kurian; Esther Meyer; Brenda J. Barry; Omar Khwaja; Mustafa A. Salih; Tommy Stödberg; Ingrid E. Scheffer; Eamonn R. Maher; Mustafa Sahin; Bai-Lin Wu; Gerard T. Berry; Christopher A. Walsh; Jonathan Picker; Sanjeev V. Kothare

Malignant migrating partial seizures in infancy (MMPEI) is an early onset epileptic encephalopathy with few known etiologies. We sought to identify a novel cause of MMPEI in a child with MMPEI whose healthy parents were consanguineous. We used array comparative genomic hybridization (CGH) to identify copy number variants genome‐wide and long‐range polymerase chain reaction to further delineate the breakpoints of a deletion found by CGH. The proband had an inherited homozygous deletion of chromosome 20p13, disrupting the promoter region and first three coding exons of the gene PLCB1. Additional MMPEI cases were screened for similar deletions or mutations in PLCB1 but did not harbor mutations. Our results suggest that loss of PLCβ1 function is one cause of MMPEI, consistent with prior studies in a Plcb1 knockout mouse model that develops early onset epilepsy. We provide novel insight into the molecular mechanisms underlying MMPEI and further implicate PLCB1 as a candidate gene for severe childhood epilepsies. This work highlights the importance of pursuing genetic etiologies for severe early onset epilepsy syndromes.


Annals of Neurology | 2010

Rett syndrome diagnostic criteria: Lessons from the Natural History Study

Alan K. Percy; Jeffrey L. Neul; Daniel G. Glaze; Kathleen J. Motil; Steven A. Skinner; Omar Khwaja; Hye Seung Lee; Jane B. Lane; Judy O. Barrish; Fran Annese; Lauren McNair; Joy Graham; Katherine V. Barnes

Analysis of 819 participants enrolled in the Rett syndrome (RTT) Natural History Study validates recently revised diagnostic criteria. 765 females fulfilled 2002 consensus criteria for classic (653/85.4%) or variant (112/14.6%) RTT. All participants classified as classic RTT fulfilled each revised main criterion; supportive criteria were not uniformly present. All variant RTT participants met at least 3 of 6 main criteria in the 2002, 2 of 4 main criteria in the current format, and 5 of 11 supportive criteria in both. This analysis underscores the critical role of main criteria for classic RTT; variant RTT requires both main and supportive criteria. Ann Neurol 2010


Epilepsia | 2013

Whole genome sequencing identifies SCN2A mutation in monozygotic twins with Ohtahara syndrome and unique neuropathologic findings

Marlin Touma; Mugdha Joshi; Meghan Connolly; P. Ellen Grant; Anne Hansen; Omar Khwaja; Gerard T. Berry; Hannah C. Kinney; Annapurna Poduri; Pankaj B. Agrawal

Mutations in SCN2A gene cause a variety of epilepsy syndromes. We report a novel SCN2A‐associated epilepsy phenotype in monozygotic twins with tonic seizures soon after birth and a suppression‐burst electroencephalography (EEG) pattern. We reviewed the medical records, EEG tracings, magnetic resonance imaging (MRI), and neuropathologic findings, and performed whole genome sequencing (WGS) on Twin Bs DNA and Sanger sequencing (SS) on candidate gene mutations. Extensive neurometabolic evaluation and early neuroimaging studies were normal. Twin A died of an iatrogenic cause at 2 weeks of life. His neuropathologic examination was remarkable for dentate‐olivary dysplasia and granule cell dispersion of the dentate gyrus. Twin B became seizure free at 8 months and was off antiepileptic drugs by 2 years. His brain MRI, normal at 2 months, revealed evolving brainstem and basal ganglia abnormalities at 8 and 15 months that resolved by 20 months. At 2.5 years, Twin B demonstrated significant developmental delay. Twin Bs WGS revealed a heterozygous variant c.788C>T predicted to cause p.Ala263Val change in SCN2A and confirmed to be de novo in both twins by SS. In conclusion, we have identified a de novo SCN2A mutation as the etiology for Ohtahara syndrome in monozygotic twins associated with a unique dentate‐olivary dysplasia in the deceased twin.


Neurology | 2011

Clinical severity and quality of life in children and adolescents with Rett syndrome

Jane B. Lane; H-S Lee; L.W. Smith; P. Cheng; Alan K. Percy; Daniel G. Glaze; Jeffrey L. Neul; Kathleen J. Motil; Judy O. Barrish; Steve A. Skinner; Fran Annese; Lauren McNair; Joy Graham; Omar Khwaja; Katherine V. Barnes; Jeffrey P. Krischer

Objective: The clinical features and genetics of Rett syndrome (RTT) have been well studied, but examination of quality of life (QOL) is limited. This study describes the impact of clinical severity on QOL among female children and adolescents with classic RTT. Methods: Cross-sectional and longitudinal analyses were conducted on data collected from an NIH-sponsored RTT natural history study. More than 200 participants from 5 to 18 years of age with classic RTT finished their 2-year follow-up at the time of analysis. Regression models after adjustment for their MECP2 mutation type and age at enrollment were used to examine the association between clinical status and QOL. Results: Severe clinical impairment was highly associated with poor physical QOL, but worse motor function and earlier age at onset of RTT stereotypies were associated with better psychosocial QOL; conversely, better motor function was associated with poorer psychosocial QOL. Conclusions: Standard psychosocial QOL assessment for children and adolescents with RTT differs significantly with regard to their motor function severity. As clinical trials in RTT emerge, the Child Health Questionnaire 50 may represent one of the important outcome measures.


American Journal of Medical Genetics Part A | 2015

Mutations in epilepsy and intellectual disability genes in patients with features of Rett syndrome.

Heather E. Olson; Dimira Tambunan; Christopher M. LaCoursiere; Marti Goldenberg; Rebecca Pinsky; Emilie Martin; Eugenia Ho; Omar Khwaja; Walter E. Kaufmann; Annapurna Poduri

Rett syndrome and neurodevelopmental disorders with features overlapping this syndrome frequently remain unexplained in patients without clinically identified MECP2 mutations. We recruited a cohort of 11 patients with features of Rett syndrome and negative initial clinical testing for mutations in MECP2. We analyzed their phenotypes to determine whether patients met formal criteria for Rett syndrome, reviewed repeat clinical genetic testing, and performed exome sequencing of the probands. Using 2010 diagnostic criteria, three patients had classical Rett syndrome, including two for whom repeat MECP2 gene testing had identified mutations. In a patient with neonatal onset epilepsy with atypical Rett syndrome, we identified a frameshift deletion in STXBP1. Among seven patients with features of Rett syndrome not fulfilling formal diagnostic criteria, four had suspected pathogenic mutations, one each in MECP2, FOXG1, SCN8A, and IQSEC2. MECP2 mutations are highly correlated with classical Rett syndrome. Genes associated with atypical Rett syndrome, epilepsy, or intellectual disability should be considered in patients with features overlapping with Rett syndrome and negative MECP2 testing. While most of the identified mutations were apparently de novo, the SCN8A variant was inherited from an unaffected parent mosaic for the mutation, which is important to note for counseling regarding recurrence risks.

Collaboration


Dive into the Omar Khwaja's collaboration.

Top Co-Authors

Avatar

Eugenia Ho

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judy A. Estroff

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge