Omar Niss
Cincinnati Children's Hospital Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Omar Niss.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Nihal Bakeer; Jeanne James; Swarnava Roy; Janaka Wansapura; Shiva Kumar Shanmukhappa; John N. Lorenz; Hanna Osinska; Kurt Backer; Anne Cecile Huby; Archana Shrestha; Omar Niss; Robert J. Fleck; Charles T. Quinn; Michael D. Taylor; Enkhsaikhan Purevjav; Bruce J. Aronow; Jeffrey A. Towbin; Punam Malik
Significance Sickle cell anemia (SCA) is a common monogenic disorder associated with significant morbidity and mortality and a high incidence of unexplained sudden death in young adults. With the prevention of infections, there is an increasing appreciation for cardiopulmonary complications and a cardiac phenotype that cannot be solely attributed to chronic anemia. We used mouse models of SCA and iron-deficient anemia to show distinct functional, pathological, ultrastructural, and molecular cardiac features causing a unique restrictive cardiomyopathy in SCA that predisposed the myocardium to electrophysiological abnormalities and sudden death. This is a comprehensive longitudinal analysis in preclinical mouse models that unifies the previously reported diverse cardiac phenotypes in SCA, and opens new avenues for early diagnostics and targeted therapies for human SCA-related cardiac disease. Cardiopulmonary complications are the leading cause of mortality in sickle cell anemia (SCA). Elevated tricuspid regurgitant jet velocity, pulmonary hypertension, diastolic, and autonomic dysfunction have all been described, but a unifying pathophysiology and mechanism explaining the poor prognosis and propensity to sudden death has been elusive. Herein, SCA mice underwent a longitudinal comprehensive cardiac analysis, combining state-of-the-art cardiac imaging with electrocardiography, histopathology, and molecular analysis to determine the basis of cardiac dysfunction. We show that in SCA mice, anemia-induced hyperdynamic physiology was gradually superimposed with restrictive physiology, characterized by progressive left atrial enlargement and diastolic dysfunction with preserved systolic function. This phenomenon was absent in WT mice with experimentally induced chronic anemia of similar degree and duration. Restrictive physiology was associated with microscopic cardiomyocyte loss and secondary fibrosis detectable as increased extracellular volume by cardiac-MRI. Ultrastructural mitochondrial changes were consistent with severe chronic hypoxia/ischemia and sarcomere diastolic-length was shortened. Transcriptome analysis revealed up-regulation of genes involving angiogenesis, extracellular-matrix, circadian-rhythm, oxidative stress, and hypoxia, whereas ion-channel transport and cardiac conduction were down-regulated. Indeed, progressive corrected QT prolongation, arrhythmias, and ischemic changes were noted in SCA mice before sudden death. Sudden cardiac death is common in humans with restrictive cardiomyopathies and long QT syndromes. Our findings may thus provide a unifying cardiac pathophysiology that explains the reported cardiac abnormalities and sudden death seen in humans with SCA.
American Journal of Hematology | 2016
Charles T. Quinn; Eric P. Smith; Shahriar Arbabi; Paramjit K. Khera; Christopher J. Lindsell; Omar Niss; Clinton H. Joiner; Robert S. Franco; Robert M. Cohen
Hemolysis is a key feature of sickle cell anemia (HbSS). Direct quantitation of hemolysis could be used as an objective outcome in clinical trials of new therapeutics for HbSS and would also enable better human studies of the pathogenesis of complications of HbSS that are ostensibly hemolysis‐related, such as pulmonary hypertension. However, contemporary human studies in HbSS have used only surrogate markers of hemolysis rather than direct measurements of RBC survival. We directly quantified hemolysis in HbSS by measuring survival of an age cohort of RBCs labeled with a stable isotope, administered orally as 15N‐glycine, a metabolic precursor of heme. The atomic excess of 15N in heme extracted from blood was monitored by mass spectrometry over time. We performed 13 labeling experiments in 11 individuals with HbSS. Mean RBC survival was 31.9 days (range 14.1–53.6). Both HbF level, a known determinant of hemolysis, and absolute reticulocyte count (ARC), an index of the marrows response to hemolysis, correlated with directly measured RBC survival (r = 0.61, P < 0.002; r = −0.84, P < 0.001). However, commonly used biochemical surrogates of hemolysis (LDH, AST, bilirubin, and plasma free hemoglobin) did not correlate with directly measured RBC survival. These biochemical surrogates should be interpreted cautiously, at best, in clinical trials and human physiologic studies in HbSS. ARC was the best correlate of total hemolysis, but only 70% of the variation in RBC survival was reflected in this marker. If greater accuracy is required in human studies, 15N‐glycine RBC labeling can directly and accurately quantify hemolysis. Am. J. Hematol. 91:1195–1201, 2016.
The Journal of Allergy and Clinical Immunology | 2015
Omar Niss; Allyson Sholl; Jack Bleesing; David A. Hildeman
BACKGROUND Autoimmune lymphoproliferative syndrome (ALPS) is a human disorder of T cell homeostasis caused by mutations that impair FAS-mediated apoptosis. A defining characteristic of ALPS is the expansion of double negative T cells (DNTC). Relatively little is known about how defective FAS-driven cell death and the Bcl-2 apoptotic pathway intersect in ALPS patients. OBJECTIVE We studied changes in Bcl-2 family member expression in ALPS to determine whether the Bcl-2 pathway might provide a therapeutic target. METHODS We used flow cytometry to analyze the expression of pro- and anti-apoptotic Bcl-2 family members in T cells from 12 ALPS patients and determined the in vitro sensitivity of ALPS DNTC to the pro-apoptotic BH3 mimetic, ABT-737. RESULTS The pro-apoptotic molecule, Bim, was significantly elevated in DNTC. Although no general pattern of individual anti-apoptotic Bcl-2 family members emerged, increased expression of Bim was always accompanied by increased expression of at least 1 anti-apoptotic Bcl-2 family member. Strikingly, Bim levels in DNTC correlated significantly with serum IL-10 in ALPS patients, and IL-10 was sufficient to mildly induce Bim in normal and ALPS T cells via a Janus kinase/signal transducer and activator of transcription 3-dependent mechanism. Finally, ABT-737 preferentially killed ALPS DNTC in vitro. CONCLUSION Combined, these data show that an IL-10/Janus kinase/signal transducer and activator of transcription 3 pathway drives Bim expression in ALPS DNTC, which renders them sensitive to BH3 mimetics, uncovering a potentially novel therapeutic approach to ALPS.
Blood | 2017
Omar Niss; Robert J. Fleck; Fowe Makue; Tarek Alsaied; Payal Desai; Jeffrey A. Towbin; Punam Malik; Michael D. Taylor; Charles T. Quinn
Sickle cell anemia (SCA)-related cardiomyopathy is characterized by diastolic dysfunction and hyperdynamic features. Diastolic dysfunction portends early mortality in SCA. Diastolic dysfunction is associated with microscopic myocardial fibrosis in SCA mice, but the cause of diastolic dysfunction in humans with SCA is unknown. We used cardiac magnetic resonance measurements of extracellular volume fraction (ECV) to discover and quantify diffuse myocardial fibrosis in 25 individuals with SCA (mean age, 23 ± 13 years) and determine the association between diffuse myocardial fibrosis and diastolic dysfunction. ECV was calculated from pre- and post-gadolinium T1 measurements of blood and myocardium, and diastolic function was assessed by echocardiography. ECV was markedly increased in all participants compared with controls (0.44 ± 0.08 vs 0.26 ± 0.02, P < .0001), indicating the presence of diffuse myocardial fibrosis. Seventeen patients (71%) had diastolic abnormalities, and 7 patients (29%) met the definition of diastolic dysfunction. Participants with diastolic dysfunction had higher ECV (0.49 ± 0.07 vs 0.37 ± 0.04, P = .01) and N-terminal pro-brain natriuretic peptide (NT-proBNP; 191 ± 261 vs 33 ± 33 pg/mL, P = .04) but lower hemoglobin (8.4 ± 0.3 vs 10.9 ± 1.4 g/dL, P = .004) compared with participants with normal diastolic function. Participants with the highest ECV values (≥0.40) were more likely to have diastolic dysfunction (P = .003) and increased left atrial volume (57 ± 11 vs 46 ± 12 mL/m2, P = .04) compared with those with ECV <0.4. ECV correlated with hemoglobin (r = -0.46, P = .03) and NT-proBNP (r = 0.62, P = .001). In conclusion, diffuse myocardial fibrosis, determined by ECV, is a common and previously underappreciated feature of SCA that is associated with diastolic dysfunction, anemia, and high NT-proBNP. Diffuse myocardial fibrosis is a novel mechanism that appears to underlie diastolic dysfunction in SCA.
American Journal of Hematology | 2017
Charles T. Quinn; Santosh L. Saraf; Victor R. Gordeuk; Courtney D. Fitzhugh; Susan Creary; Prasad Bodas; Alex George; Ashok Raj; Alecia C. Nero; Catherine E. Terrell; Lisa McCord; Adam Lane; Hans Ackerman; Yu Yang; Omar Niss; Michael D. Taylor; Prasad Devarajan; Punam Malik
Nephropathy is a common and progressive complication of sickle cell anemia (SCA). In SCA mice, we found that hyperangiotensinemia in the absence of hypertension underlies nephropathy, and its downregulation by losartan, an angiotensin‐II‐receptor‐1 blocker, reduced albuminuria and progression of nephropathy. Therefore, we performed a phase‐2 trial of oral losartan, given for 6 months, to explore whether it reduced albuminuria in children and adults with SCA. Participants were allocated to groups defined by class of baseline urinary albumin‐to‐creatinine ratio (UACR): no albuminuria (NoA), microalbuminuria (MicroA), and macroalbuminuria (MacroA). The primary endpoint was a ≥25% reduction UACR from baseline. There were 32 evaluable participants (mean age 24 years; NoA = 14, MicroA = 12, MacroA = 6). The primary endpoint was met in 83% of the MacroA group (P < 0.0001) and 58% of the MicroA group (P < 0.0001). Median fold‐change in UACR was −0.74 for MacroA and −0.46 for MicroA. In MacroA and MicroA, UACR classification improved in 50% but worsened in 11%. Urine osmolality and estimated glomerular filtration rate (eGFR) did not change significantly. Losartan was discontinued in three participants [leg cramps, N = 1; decline in eGFR >25% (142➝104 mL/minute/1.73 m2), N = 1; rise in serum creatinine >50% (0.2➝0.3 mg/dL), N = 1]. Albuminuria was associated with diastolic dysfunction and impaired functional capacity, although cardiopulmonary status was unchanged after 6 months of losartan therapy. In summary, losartan decreased urinary albumin excretion in most participants with albuminuria. Those with macroalbuminuria had the greatest benefit. This study forms the basis for a phase‐3, randomized, placebo‐controlled trial of losartan for the nephropathy of SCA.
Blood Cells Molecules and Diseases | 2016
Omar Niss; Satheesh Chonat; Neha Dagaonkar; Marya Obaid Almansoori; Karol Kerr; Zora R. Rogers; Patrick T. McGann; Maa Ohui Quarmyne; Mary A. Risinger; Kejian Zhang; Theodosia A. Kalfa
Hereditary elliptocytosis (HE) and hereditary pyropoikilocytosis (HPP) are heterogeneous red blood cell (RBC) membrane disorders that result from mutations in the genes encoding α-spectrin (SPTA1), β-spectrin (SPTB), or protein 4.1R (EPB41). The resulting defects alter the horizontal cytoskeletal associations and affect RBC membrane stability and deformability causing shortened RBC survival. The clinical diagnosis of HE and HPP relies on identifying characteristic RBC morphology on peripheral blood smear and specific membrane biomechanical properties using osmotic gradient ektacytometry. However, this phenotypic diagnosis may not be readily available in patients requiring frequent transfusions, and does not predict disease course or severity. Using Next-Generation sequencing, we identified the causative genetic mutations in fifteen patients with clinically suspected HE or HPP and correlated the identified mutations with the clinical phenotype and ektacytometry profile. In addition to identifying three novel mutations, gene sequencing confirmed and, when the RBC morphology was not evaluable, identified the diagnosis. Moreover, genotypic differences justified the phenotypic differences within families with HE/HPP.
Blood Cells Molecules and Diseases | 2017
Omar Niss; Michael D. Taylor
Cardiac magnetic resonance imaging (CMR) has evolved from an effective research tool to a non-invasive clinical modality with versatile applications. The accuracy of volume measurements and functional assessment and the ability to identify unique myocardial tissue characteristics non-invasively are the primary advantages of CMR. The use of CMR in sickle cell disease (SCD) has been limited clinically to myocardial iron assessment. The use of other CMR applications to characterize the cardiac pathology in SCD is slowly emerging but remains limited to research level. In this review, we discuss some of the applications of CMR in studying cardiovascular diseases and its potential uses in SCD for research and clinical purposes.
Pediatric Blood & Cancer | 2018
Tarek Alsaied; Omar Niss; Adam W. Powell; Robert J. Fleck; James Cnota; Clifford Chin; Punam Malik; Charles T. Quinn; Michael D. Taylor
Left ventricular diastolic dysfunction (DD) is an independent risk factor for mortality in sickle cell anemia (SCA) and is associated with increased extracellular volume (ECV) on cardiac MRI (CMR). Exercise impairment is common in SCA, but its causes and prognostic value are not well understood.
Pediatric Blood & Cancer | 2017
Parul Rai; Omar Niss; Punam Malik
Anemia, hemolysis‐driven vasculopathy, and intrinsic myocardial injury have been proposed as predisposing factors to cardiac disease in sickle cell anemia (SCA). The individual impact of these mechanisms on the cardiac features of SCA and the way they influence complications such as sudden death and dysrhythmias have been unclear. Recent findings of an acquired restrictive SCA‐related cardiomyopathy, driven by myocardial fibrosis, may explain some of these cardiac features. Given the complexity of cardiac pathology in SCA, using additional parameters to tricuspid regurgitant jet velocity (left atrial volume, diastolic parameters, NT‐proBNP) may improve the accuracy of noninvasive screening for cardiopulmonary complications in SCA.
Archive | 2016
Omar Niss; Charles T. Quinn
Cardiac morbidity, early mortality, and sudden death are the major consequences of sickle cell disease (SCD) in patients surviving into adulthood. Pulmonary hypertension (PH), elevated tricuspid regurgitant jet velocity (TRV), and diastolic dysfunction have all been identified to correlate with early mortality in adults with SCD. However, the unifying pathophysiology behind these abnormalities and its connection with early mortality and sudden death have not been recognized previously. We have found that SCD patients have a unique cardiomyopathy characterized by restrictive physiology (diastolic dysfunction, left atrial dilation and normal systolic function) superimposed on features of hyperdynamic circulation (left ventricular [LV] enlargement and eccentric LV hypertrophy. The restrictive cardiomyopathy of SCD causes pulmonary congestion and post-capillary PH. This can be detected by a mild elevation in TRV, which is likely a marker of the SCD-related cardiomyopathy rather than pulmonary arterial disease. Similar to other restrictive cardiomyopathies, the SCD cardiomyopathy predisposes to arrhythmias and sudden death, even when pulmonary pressures are not severely elevated. We have also found that diffuse myocardial fibrosis is common in SCD and may underlie the diastolic dysfunction, but more studies are needed to understand the mechanisms of SCD-related cardiomyopathy and to identify new therapies to decrease cardiac morbidity and improve the life expectancy of SCD patients.