Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Omar Rossi is active.

Publication


Featured researches published by Omar Rossi.


PLOS ONE | 2012

High Yield Production Process for Shigella Outer Membrane Particles

Anna Maria Colucci; Luana Maggiore; Silvia Sanzone; Omar Rossi; Ilaria Ferlenghi; Isabella Pesce; Mariaelena Caboni; Nathalie Norais; Vito Di Cioccio; Allan Saul; Christiane Gerke

Gram-negative bacteria naturally shed particles that consist of outer membrane lipids, outer membrane proteins, and soluble periplasmic components. These particles have been proposed for use as vaccines but the yield has been problematic. We developed a high yielding production process of genetically derived outer membrane particles from the human pathogen Shigella sonnei. Yields of approximately 100 milligrams of membrane-associated proteins per liter of fermentation were obtained from cultures of S. sonnei ΔtolR ΔgalU at optical densities of 30–45 in a 5 L fermenter. Proteomic analysis of the purified particles showed the preparation to primarily contain predicted outer membrane and periplasmic proteins. These were highly immunogenic in mice. The production of these outer membrane particles from high density cultivation of bacteria supports the feasibility of scaling up this approach as an affordable manufacturing process. Furthermore, we demonstrate the feasibility of using this process with other genetic manipulations e.g. abolition of O antigen synthesis and modification of the lipopolysaccharide structure in order to modify the immunogenicity or reactogenicity of the particles. This work provides the basis for a large scale manufacturing process of Generalized Modules of Membrane Antigens (GMMA) for production of vaccines from Gram-negative bacteria.


Vaccine | 2014

A broadly-protective vaccine against meningococcal disease in sub-Saharan Africa based on generalized modules for membrane antigens (GMMA).

Oliver Koeberling; Emma Ispasanie; Julia Hauser; Omar Rossi; Gerd Pluschke; Dominique A. Caugant; Allan Saul; Calman A. MacLennan

INTRODUCTION Neisseria meningitidis causes epidemics of meningitis in sub-Saharan Africa. These have mainly been caused by capsular group A strains, but W and X strains are increasingly contributing to the burden of disease. Therefore, an affordable vaccine that provides broad protection against meningococcal disease in sub-Saharan Africa is required. METHODS We prepared Generalized Modules for Membrane Antigens (GMMA) from a recombinant serogroup W strain expressing PorA P1.5,2, which is predominant among African W isolates. The strain was engineered with deleted capsule locus genes, lpxL1 and gna33 genes and over-expressed fHbp variant 1, which is expressed by the majority of serogroup A and X isolates. RESULTS We screened nine W strains with deleted capsule locus and gna33 for high-level GMMA release. A mutant with five-fold increased GMMA release compared with the wild type was further engineered with a lpxL1 deletion and over-expression of fHbp. GMMA from the production strain had 50-fold lower ability to stimulate IL-6 release from human PBMC and caused 1000-fold lower TLR-4 activation in Human Embryonic Kidney cells than non-detoxified GMMA. In mice, the GMMA vaccine induced bactericidal antibody responses against African W strains expressing homologous PorA and fHbp v.1 or v.2 (geometric mean titres [GMT]=80,000-200,000), and invasive African A and X strains expressing a heterologous PorA and fHbp variant 1 (GMT=20-2500 and 18-5500, respectively). Sera from mice immunised with GMMA without over-expressed fHbp v.1 were unable to kill the A and X strains, indicating that bactericidal antibodies against these strains are directed against fHbp. CONCLUSION A GMMA vaccine produced from a recombinant African N. meningitidis W strain with deleted capsule locus, lpxL1, gna33 and overexpressed fHbp v.1 has potential as an affordable vaccine with broad coverage against strains from all main serogroups currently causing meningococcal meningitis in sub-Saharan Africa.


Journal of Biological Chemistry | 2014

Modulation of Endotoxicity of Shigella Generalized Modules for Membrane Antigens (GMMA) by Genetic Lipid A Modifications RELATIVE ACTIVATION OF TLR4 AND TLR2 PATHWAYS IN DIFFERENT MUTANTS

Omar Rossi; Isabella Pesce; C. Giannelli; Susanna Aprea; Mariaelena Caboni; Francesco Citiulo; Sara Valentini; Ilaria Ferlenghi; Calman A. MacLennan; Ugo D'Oro; Allan Saul; Christiane Gerke

Background: GMMA from Gram-negative bacteria are an attractive vaccine technology, but lipopolysaccharide (LPS) reactogenicity limits use. Results: Genetic LPS modification resulting in penta-acylation reduced Shigella GMMA reactogenicity to a TLR2-mediated limit. Modifications resulting in palmitoleoylated hexa-acylated LPS triggered higher TLR4-mediated reactogenicity. Conclusion: Use of GMMA as vaccines will likely require LPS penta-acylation. Significance: Understanding the relative contribution of TLR activation guides GMMA vaccine development. Outer membrane particles from Gram-negative bacteria are attractive vaccine candidates as they present surface antigens in their natural context. We previously developed a high yield production process for genetically derived particles, called generalized modules for membrane antigens (GMMA), from Shigella. As GMMA are derived from the outer membrane, they contain immunostimulatory components, especially lipopolysaccharide (LPS). We examined ways of reducing their reactogenicity by modifying lipid A, the endotoxic part of LPS, through deletion of late acyltransferase genes, msbB or htrB, in GMMA-producing Shigella sonnei and Shigella flexneri strains. GMMA with resulting penta-acylated lipid A from the msbB mutants showed a 600-fold reduced ability, and GMMA from the S. sonnei ΔhtrB mutant showed a 60,000-fold reduced ability compared with GMMA with wild-type lipid A to stimulate human Toll-like receptor 4 (TLR4) in a reporter cell line. In human peripheral blood mononuclear cells, GMMA with penta-acylated lipid A showed a marked reduction in induction of inflammatory cytokines (S. sonnei ΔhtrB, 800-fold; ΔmsbB mutants, 300-fold). We found that the residual activity of these GMMA is largely due to non-lipid A-related TLR2 activation. In contrast, in the S. flexneri ΔhtrB mutant, a compensatory lipid A palmitoleoylation resulted in GMMA with hexa-acylated lipid A with ∼10-fold higher activity to stimulate peripheral blood mononuclear cells than GMMA with penta-acylated lipid A, mostly due to retained TLR4 activity. Thus, for use as vaccines, GMMA will likely require lipid A penta-acylation. The results identify the relative contributions of TLR4 and TLR2 activation by GMMA, which need to be taken into consideration for GMMA vaccine development.


PLOS Pathogens | 2015

An O Antigen Capsule Modulates Bacterial Pathogenesis in Shigella sonnei

Mariaelena Caboni; Thierry Pedron; Omar Rossi; David Goulding; Derek Pickard; Francesco Citiulo; Calman A. MacLennan; Gordon Dougan; Nicholas R. Thomson; Allan Saul; Philippe J. Sansonetti; Christiane Gerke

Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg) of the lipopolysaccharide (LPS) plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.


PLOS ONE | 2015

Production of a Shigella sonnei Vaccine Based on Generalized Modules for Membrane Antigens (GMMA), 1790GAHB.

Christiane Gerke; Anna Maria Colucci; C. Giannelli; Silvia Sanzone; Claudia Giorgina Vitali; Luigi Sollai; Omar Rossi; Laura B. Martin; Jochen Auerbach; Vito Di Cioccio; Allan Saul

Recently, we developed a high yield production process for outer membrane particles from genetically modified bacteria, called Generalized Modules of Membrane Antigens (GMMA), and the corresponding simple two step filtration purification, enabling economic manufacture of these particles for use as vaccines. Using a Shigella sonnei strain that was genetically modified to produce penta-acylated lipopolysaccharide (LPS) with reduced endotoxicity and to maintain the virulence plasmid encoding for the immunodominant O antigen component of the LPS, scale up of the process to GMP pilot scale was straightforward and gave high yields of GMMA with required purity and consistent results. GMMA were formulated with Alhydrogel and were highly immunogenic in mice and rabbits. In mice, a single immunization containing 29 ng protein and 1.75 ng of O antigen elicited substantial anti-LPS antibody levels. As GMMA contain LPS and lipoproteins, assessing potential reactogenicity was a key aspect of vaccine development. In an in vitro monocyte activation test, GMMA from the production strain showed a 600-fold lower stimulatory activity than GMMA with unmodified LPS. Two in vivo tests confirmed the low potential for reactogenicity. We established a modified rabbit pyrogenicity test based on the European Pharmacopoeia pyrogens method but using intramuscular administration of the full human dose (100 μg of protein). The vaccine elicited an average temperature rise of 0.5°C within four hours after administration, which was considered acceptable and showed that the test is able to detect a pyrogenic response. Furthermore, a repeat dose toxicology study in rabbits using intramuscular (100 μg/dose), intranasal (80 μg/dose), and intradermal (10 μg/dose) administration routes showed good tolerability of the vaccine by all routes and supported its suitability for use in humans. The S. sonnei GMMA vaccine is now in Phase 1 dose-escalation clinical trials.


Clinical and Vaccine Immunology | 2016

Toll-Like Receptor Activation by Generalized Modules for Membrane Antigens from Lipid A Mutants of Salmonella enterica Serovars Typhimurium and Enteritidis

Omar Rossi; Mariaelena Caboni; Aurel Negrea; Francesca Necchi; Renzo Alfini; Francesca Micoli; Allan Saul; Calman A. MacLennan; Simona Rondini; Christiane Gerke

ABSTRACT Invasive nontyphoidal Salmonella (iNTS) disease is a neglected disease with high mortality in children and HIV-positive individuals in sub-Saharan Africa, caused primarily by Africa-specific strains of Salmonella enterica serovars Typhimurium and Enteritidis. A vaccine using GMMA (generalized modules for membrane antigens) from S. Typhimurium and S. Enteritidis containing lipid A modifications to reduce potential in vivo reactogenicity is under development. GMMA with penta-acylated lipid A showed the greatest reduction in the level of cytokine release from human peripheral blood monocytes from that for GMMA with wild-type lipid A. Deletion of the lipid A modification genes msbB and pagP was required to achieve pure penta-acylation. Interestingly, ΔmsbB ΔpagP GMMA from S. Enteritidis had a slightly higher stimulatory potential than those from S. Typhimurium, a finding consistent with the higher lipopolysaccharide (LPS) content and Toll-like receptor 2 (TLR2) stimulatory potential of the former. Also, TLR5 ligand flagellin was found in Salmonella GMMA. No relevant contribution to the stimulatory potential of GMMA was detected even when the flagellin protein FliC from S. Typhimurium was added at a concentration as high as 10% of total protein, suggesting that flagellin impurities are not a major factor for GMMA-mediated immune stimulation. Overall, the stimulatory potential of S. Typhimurium and S. Enteritidis ΔmsbB ΔpagP GMMA was close to that of Shigella sonnei GMMA, which are currently in phase I clinical trials.


Molecular Biotechnology | 2015

Comparison of Colorimetric Assays with Quantitative Amino Acid Analysis for Protein Quantification of Generalized Modules for Membrane Antigens (GMMA)

Omar Rossi; Luana Maggiore; Francesca Necchi; Oliver Koeberling; Calman A. MacLennan; Allan Saul; Christiane Gerke

Genetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward. We compared protein quantification by Bradford, Lowry, and Non-Interfering assays using bovine serum albumin (BSA) as standard with quantitative amino acid (AA) analysis, the most accurate currently available method for protein quantification. The Lowry assay has the lowest inter- and intra-assay variation and gives the best linearity between protein amount and absorbance. In all three assays, the color yield (optical density per mass of protein) of GMMA was markedly different from that of BSA with a ratio of approximately 4 for the Bradford assay, and highly variable between different GMMA; and approximately 0.7 for the Lowry and Non-Interfering assays, highlighting the need for calibrating the standard used in the colorimetric assay against GMMA quantified by AA analysis. In terms of a combination of ease, reproducibility, and proportionality of protein measurement, and comparability between samples, the Lowry assay was superior to Bradford and Non-Interfering assays for GMMA quantification.


International Journal of Medical Microbiology | 2016

Quantitative proteomic analysis of Shigella flexneri and Shigella sonnei Generalized Modules for Membrane Antigens (GMMA) reveals highly pure preparations

Luana Maggiore; Lu Yu; Ulrich Omasits; Omar Rossi; Gordon Dougan; Nicholas R. Thomson; Allan Saul; Jyoti S. Choudhary; Christiane Gerke

Graphical abstract


Proceedings of the National Academy of Sciences of the United States of America | 2018

Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella

Francesca Micoli; Simona Rondini; Renzo Alfini; Luisa Lanzilao; Francesca Necchi; Aurel Negrea; Omar Rossi; Cornelia Brandt; Simon Clare; Pietro Mastroeni; Rino Rappuoli; Allan Saul; Calman A. MacLennan

Significance Bacteria, such as nontyphoidal Salmonella, are responsible for a large global burden of disease. Due to limited need in developed countries and consequent lack of commercial incentive, vaccines are unavailable against many bacteria. Glycoconjugates constitute the standard bacterial vaccine approach, but can be costly, particularly where multivalent preparations are required. This report compares a low-cost vesicle-based technology, known as Generalized Modules for Membrane Antigens (GMMA), with glycoconjugate in bivalent vaccines against nontyphoidal Salmonella. In head-to-head immunogenicity and infection studies in mice, GMMA performed at least as well as equivalent glycoconjugate vaccine, indicating good potential of this approach. Given that many bacteria are amenable to genetic engineering for GMMA production, the GMMA strategy could provide a breakthrough for a range of needed bacterial vaccines. Nontyphoidal Salmonellae cause a devastating burden of invasive disease in sub-Saharan Africa with high levels of antimicrobial resistance. Vaccination has potential for a major global health impact, but no licensed vaccine is available. The lack of commercial incentive makes simple, affordable technologies the preferred route for vaccine development. Here we compare equivalent Generalized Modules for Membrane Antigens (GMMA) outer membrane vesicles and O-antigen-CRM197 glycoconjugates to deliver lipopolysaccharide O-antigen in bivalent Salmonella Typhimurium and Enteritidis vaccines. Salmonella strains were chosen and tolR deleted to induce GMMA production. O-antigens were extracted from wild-type bacteria and conjugated to CRM197. Purified GMMA and glycoconjugates were characterized and tested in mice for immunogenicity and ability to reduce Salmonella infection. GMMA and glycoconjugate O-antigen had similar structural characteristics, O-acetylation, and glucosylation levels. Immunization with GMMA induced higher anti–O-antigen IgG than glycoconjugate administered without Alhydrogel adjuvant. With Alhydrogel, antibody levels were similar. GMMA induced a diverse antibody isotype profile with greater serum bactericidal activity than glycoconjugate, which induced almost exclusively IgG1. Immunization reduced bacterial colonization of mice subsequently infected with Salmonella. S. Typhimurium numbers were lower in tissues of mice vaccinated with GMMA compared with glycoconjugate. S. Enteritidis burden in the tissues was similar in mice immunized with either vaccine. With favorable immunogenicity, low cost, and ability to induce functional antibodies and reduce bacterial burden, GMMA offer a promising strategy for the development of a nontyphoidal Salmonella vaccine compared with established glycoconjugates. GMMA technology is potentially attractive for development of vaccines against other bacteria of global health significance.


PLOS ONE | 2017

Contribution of factor H-Binding protein sequence to the cross-reactivity of meningococcal native outer membrane vesicle vaccines with over-expressed fHbp variant group 1

Arianna Marini; Omar Rossi; Maria Grazia Aruta; Francesca Micoli; Simona Rondini; Serafina Guadagnuolo; Isabel Delany; Ian R. Henderson; Adam F. Cunningham; Allan Saul; Calman A. MacLennan; Oliver Koeberling

Factor H-binding protein (fHbp) is an important meningococcal vaccine antigen. Native outer membrane vesicles with over-expressed fHbp (NOMV OE fHbp) have been shown to induce antibodies with broader functional activity than recombinant fHbp (rfHbp). Improved understanding of this broad coverage would facilitate rational vaccine design. We performed a pair-wise analysis of 48 surface-exposed amino acids involved in interacting with factor H, among 383 fHbp variant group 1 sequences. We generated isogenic NOMV-producing meningococcal strains from an African serogroup W isolate, each over-expressing one of four fHbp variant group 1 sequences (ID 1, 5, 9, or 74), including those most common among invasive African meningococcal isolates. Mice were immunised with each NOMV, and sera tested for IgG levels against each of the rfHbp ID and for ability to kill a panel of heterologous meningococcal isolates. At the fH-binding site, ID pairs differed by a maximum of 13 (27%) amino acids. ID 9 shared an amino acid sequence common to 83 ID types. The selected ID types differed by up to 6 amino acids, in the fH-binding site. All NOMV and rfHbp induced high IgG levels against each rfHbp. Serum killing from mice immunised with rfHbp was generally less efficient and more restricted compared to NOMV, which induced antibodies that killed most meningococci tested, with decreased stringency for ID type differences. Breadth of killing was mostly due to anti-fHbp antibodies, with some restriction according to ID type sequence differences. Nevertheless, under our experimental conditions, no relationship between antibody cross-reactivity and variation fH-binding site sequence was identified. NOMV over-expressing different fHbp IDs belonging to variant group 1 induce antibodies with fine specificities against fHbp, and ability to kill broadly meningococci expressing heterologous fHbp IDs. The work reinforces that meningococcal NOMV with OE fHbp is a promising vaccine strategy, and provides a basis for rational selection of antigen sequence types for over-expression on NOMV.

Collaboration


Dive into the Omar Rossi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas R. Thomson

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge