Ombretta Melaiu
University of Pisa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ombretta Melaiu.
Oncogene | 2014
Justin Stebbing; Lei Cheng Lit; Hua Zhang; R S Darrington; Ombretta Melaiu; B Rudraraju; Georgios Giamas
The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3—kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies.
PLOS ONE | 2014
Ombretta Melaiu; Justin Stebbing; Ylenia Lombardo; Elisa Bracci; Norihisa Uehara; Alessandra Bonotti; Alfonso Cristaudo; Rudy Foddis; Luciano Mutti; Roberto Barale; Federica Gemignani; Georgios Giamas; Stefano Landi
Genes involved in the carcinogenetic mechanisms underlying malignant pleural mesothelioma (MPM) are still poorly characterized. So far, mesothelin (MSLN) has aroused the most interest. It encodes for a membrane glycoprotein, frequently over-expressed in various malignancies such as MPM, and ovarian and pancreatic cancers. It has been proposed as a diagnostic and immunotherapeutic target with promising results. However, an alternative therapeutic approach seems to rise, whereby synthetic molecules, such as antisense oligonucleotides, could be used to inhibit MSLN activity. To date, such a gene-level inhibition has been attempted in two studies only, both on pancreatic and ovarian carcinoma cell lines, with the use of silencing RNA approaches. With regard to MPM, only one cell line (H2373) has been employed to study the effects of MSLN depletion. Indeed, the knowledge on the role of MSLN in MPM needs expanding. Accordingly, we investigated the expression of MSLN in a panel of three MPM cell lines, i.e. NCI-H28, Mero-14, and IstMes2; one non-MPM cell line was used as reference (Met5A). MSLN knock-down experiments on MSLN-overexpressing cells were also performed through silencing RNA (siRNA) to verify whether previous findings could be generalized to a different set of cell cultures. In agreement with previous studies, transient MSLN-silencing caused decreased proliferation rate and reduced invasive capacity and sphere formation in MSLN-overexpressing Mero-14 cells. Moreover, MSLN-siRNA combined with cisplatin, triggered a marked increase in apoptosis and a decrease in proliferation as compared to cells treated with each agent alone, thereby suggesting a sensitizing effect of siRNA towards cisplatin. In summary, our findings confirm that MSLN should be considered a key molecular target for novel gene-based targeted therapies of cancer.
Mutation Research | 2015
Ombretta Melaiu; Erika Melissari; L Mutti; Elisa Bracci; Chiara De Santi; Caterina Iofrida; Manuela Di Russo; Alfonso Cristaudo; Alessandra Bonotti; Monica Cipollini; Sonia Garritano; Rudy Foddis; Marco Lucchi; Silvia Pellegrini; Federica Gemignani; Stefano Landi
In order to broaden knowledge on the pathogenesis of malignant pleural mesothelioma (MPM), we reviewed studies on the MPM-transcriptome and identified 119 deregulated genes. However, there was poor consistency among the studies. Thus, the expression of these genes was further investigated in the present work using reverse transcriptase-quantitative PCR (RT-qPCR) in 15 MPM and 20 non-MPM tissue samples. Fifty-nine genes showed a statistically significant deregulation and were further evaluated in two epithelioid MPM cell lines (compared to MET-5A, a non-MPM cell line). Nine genes (ACSL1, CCNO, CFB, PDGFRB, SULF1, TACC1, THBS2, TIMP3, XPOT) were deregulated with statistical significance in both cell lines, 12 (ASS1, CCNB1, CDH11, COL1A1, CXADR, EIF4G1, GALNT7, ITGA4, KRT5, PTGIS, RAN, SOD1) in at least one cell line, whereas 7 (DSP, HEG1, MCM4, MSLN, NME2, NMU, TNPO2) were close but did not reach the statistical significance in any of the cell line. Patients whose MPM tissues expressed elevated mRNA levels of BIRC5, DSP, NME2, and THBS2 showed a statistically significant shorter overall survival. Although MPM is a poorly studied cancer, some features are starting to emerge. Novel cancer genes are suggested here, in particular those involved in cell-cell and cell-matrix interactions.
Journal of Thoracic Oncology | 2014
Sonia Garritano; Chiara De Santi; Roberto Silvestri; Ombretta Melaiu; Monica Cipollini; Elisa Barone; Marco Lucchi; Roberto Barale; Luciano Mutti; Federica Gemignani; Alessandra Bonotti; Rudy Foddis; Alfonso Cristaudo; Stefano Landi
Introduction: Soluble mesothelin related peptide (SMRP) was proposed as a promising diagnostic marker for malignant pleural mesothelioma (MPM). In a previous study, we found that rs1057147 within the 3′ untranslated region of MSLN gene was associated with SMRP levels. Thus, we aimed to (1) confirm the previous association on a large series of volunteers and (2) test the hypothesis that the SNP could affect microRNA binding sites. Methods: The association analysis was verified in 759 subjects. Then, in silico predictions highlighted miR-611 and miR-887 as candidate miRNAs binding to the polymorphic site. Thus, chimeric constructs bearing the alternative alleles (G > A) were assayed alone or in cotransfection with the miRNA mimics, with dual luciferase reporter assay in non-MPM Met-5A cells. The miRNAs were also assayed by western blot analysis for their ability to down-regulate endogenous mesothelin in the MPM Mero-14 cell line. Results: We confirmed that, among non-MPM volunteers, GG homozygotes have the lowest SMRP levels. When the genotype is taken into account, the specificity of SMRP as biomarker improves from 79.7% to 85.3%. Dual-luciferase assays showed a significantly lower reporter activity when the vector harbored the G allele as compared to A allele. miR-887 mimic caused a reduced reporter activity of vectors harboring A or G alleles, while miR-611 was effective only on the vector harboring the G allele. Transfection of these miRNAs into Mero-14 cells significantly reduced endogenous MSLN protein. Conclusion: SMRP performance as diagnostic biomarker improved by considering the genotype rs1057147. This polymorphism most likely affects a binding site for miR-611.
Cancer Epidemiology, Biomarkers & Prevention | 2016
Gisella Figlioli; Rossella Elisei; Cristina Romei; Ombretta Melaiu; Monica Cipollini; Franco Bambi; Bowang Chen; Aleksandra Köhler; Alfonso Cristaudo; Kari Hemminki; Federica Gemignani; Asta Försti; Stefano Landi
Background: Linkage analyses and association studies suggested that inherited genetic variations play a role in the development of differentiated thyroid carcinoma (DTC). Methods: We combined the results from a genome-wide association study (GWAS) performed by our group and from published studies on DTC. With a first approach, we evaluated whether a SNP published as associated with the risk of DTC could replicate in our GWAS (using FDR as adjustment for multiple comparisons). With the second approach, meta-analyses were performed between literature and GWAS when both sources suggested an association, increasing the statistical power of the analysis. Results: rs1799814 (CYP1A1), rs1121980 (FTO), and 3 SNPs within 9q22 (rs965513, rs7048394, and rs894673) replicated the associations described in the literature. In addition, the meta-analyses between literature and GWAS revealed 10 more SNPs within 9q22, six within FTO, two within SOD1, and single variations within HUS1, WDR3, UGT2B7, ALOX12, TICAM1, ATG16L1, HDAC4, PIK3CA, SULF1, IL11RA, VEGFA, and 1p31.3, 2q35, 8p12, and 14q13. Conclusion: This analysis confirmed several published risk loci that could be involved in DTC predisposition. Impact: These findings provide evidence for the role of germline variants in DTC etiology and are consistent with a polygenic model of the disease. Cancer Epidemiol Biomarkers Prev; 25(4); 700–13. ©2016 AACR.
Cancer Epidemiology, Biomarkers & Prevention | 2013
Monica Cipollini; Gisella Figlioli; Sonia Garritano; Simona Bramante; Loredana Maiorano; Federica Gnudi; Alice Cecchini; Francesca De Paola; Lucia Damicis; Tania Frixa; Debora Landi; Lisa Cancemi; Chiara De Santi; Ombretta Melaiu; Rudy Foddis; Alfonso Cristaudo; Alessandra Bonotti; Cristina Romei; Rossella Elisei; Giovanni Pellegrini; Roberto Barale; Federica Gemignani; Stefano Landi
Background: Genome-wide association studies have shown that the 8q24 region harbours multiple independent cancer susceptibility loci and it was also defined as the “susceptibility cancer region.” Thus, it could be hypothesized that genetic variants within this region could play a role in the risk of differentiated thyroid carcinoma (DTC). Methods: Six single-nucleotide polymorphisms within 8q24 were analyzed, previously associated with the risk of cancer (i.e., rs6983267, rs1447295, rs10808556, rs7000448, rs13254738, and rs13281615) in a population of 1,250 patients affected by DTC and 1,250 controls from Central and Southern Italy. Results: A strong association between smoking habit and risk of DTC was found [OR, 1.63; 95% confidence interval (CI), 1.39–1.91; P < 10−6]. The polymorphisms rs10808556 and rs1447295 showed an association with the risk of DTC (the strongest were the heterozygotes with OR, 1.38; 95% CI, 1.13–1.68 and OR, 1.35; 95% CI, 1.02–1.78, respectively), but, overall, they were unable to reach the statistically significant threshold following Bonferronis correction. Conclusions: Present study suggested a limited involvement of polymorphisms within 8q24 region in relation to the risk of DTC in Central and Southern Italians. Impact: The exclusion of a relationship between DTC and 8q24 among Italians further highlights the tissue-specificity of this chromosomal segment in relation to human cancer and stresses the importance of other population-specific cofactors. Cancer Epidemiol Biomarkers Prev; 22(11); 2121–5. ©2013 AACR.
DNA Repair | 2016
Monica Cipollini; Gisella Figlioli; Giuseppe Maccari; Sonia Garritano; Chiara De Santi; Ombretta Melaiu; Elisa Barone; Franco Bambi; Stefano Ermini; G. Pellegrini; Alfonso Cristaudo; Rudy Foddis; Alessandra Bonotti; Cristina Romei; Agnese Vivaldi; Laura Agate; Eleonora Molinari; Roberto Barale; Asta Försti; Kari Hemminki; Rossella Elisei; Federica Gemignani; Stefano Landi
The thyrocytes are exposed to high levels of oxidative stress which could induce DNA damages. Base excision repair (BER) is one of the principal mechanisms of defense against oxidative DNA damage, however recent evidences suggest that also nucleotide excision repair (NER) could be involved. The aim of present work was to identify novel differentiated thyroid cancer (DTC) risk variants in BER and NER genes. For this purpose, the most strongly associated SNPs within NER and BER genes found in our previous GWAS on DTC were selected and replicated in an independent series of samples for a new case-control study. Although a positive signal was detected at the nominal level of 0.05 for rs7689099 (encoding for an aminoacid change proline to arginine at codon 117 within NEIL3), none of the considered SNPs (i.e. rs7990340 and rs690860 within RFC3, rs3744767 and rs1131636 within RPA1, rs16962916 and rs3136166 in ERCC4, and rs17739370 and rs7689099 in NEIL3) was associated with the risk of DTC when the correction of multiple testing was applied. In conclusion, a role of NER and BER pathways was evoked in the susceptibility to DTC. However, this seemed to be limited to few polymorphic genes and the overall effect size appeared weak.
Genes & Cancer | 2017
Ombretta Melaiu; Calogerina Catalano; Chiara De Santi; Monica Cipollini; Gisella Figlioli; Lucia Pellè; Elisa Barone; Monica Evangelista; Alice Guazzelli; Laura Boldrini; Elisa Sensi; Alessandra Bonotti; Rudy Foddis; Alfonso Cristaudo; Luciano Mutti; Gabriella Fontanini; Federica Gemignani; Stefano Landi
Malignant pleural mesothelioma (MPM) is a cancer of the pleural cavity resistant to chemotherapy. The identification of novel therapeutic targets is needed to improve its poor prognosis. Following a review of literature and a screening of specimens we found that platelet-derived growth factor receptor beta (PDGFRB) is over-expressed, but not somatically mutated, in MPM tissues. We aimed to ascertain whether PDGFRB is a MPM-cancer driver gene. The approaches employed included the use of gene silencing and the administration of small molecules, such as crenolanib and imatinib (PDGFR inhibitors) on MPM cell lines (IstMes2, Mero-14, Mero-25). Met5A cells were used as non-malignant mesothelial cell line. PDGFRB-silencing caused a decrease in the proliferation rate, and a reduced colony formation capacity, as well as an increase of the share of cells in sub-G1 and in G2 phase, and increased apoptotic rate of MPM cell lines. Loss of migration ability was also observed. Similar, or even further enhanced, results were obtained with crenolanib. Imatinib showed the least effective activity on the phenotype. In conclusion, our study highlights PDGFRB as target with a clear role in MPM tumorigenesis and provided a rationale to explore further the efficacy of crenolanib in MPM patients, with promising results.
Disease Markers | 2017
Alessandra Bonotti; Rudy Foddis; Stefano Landi; Ombretta Melaiu; C. De Santi; L. Giusti; E. Donadio; F. Ciregia; M. R. Mazzoni; A. Lucacchini; M. Bovenzi; M. Comar; E. Pantani; A. Pistelli; Alfonso Cristaudo
Exposure to asbestos is the main cause of malignant pleural mesothelioma (MPM), a highly aggressive cancer of the pleura. Since the only tools for early detection are based on radiological tests, some authors focused on serum markers (i.e., mesothelin). The aim of this study was the evaluation of new serum biomarkers to be used individually or in combination, in order to improve the outcome of patients whose disease would be diagnosed at an earlier stage. Serum and plasma were available from 43 subjects previously exposed to asbestos and 27 MPM patients, all being epithelioid type. All the new markers found differentially expressed in MPM and healthy subjects, by proteomic and genomic approaches, have been validated in the serum by the use of specific ELISA. The combined approach, using tools of genomics and proteomics, is found to be highly innovative for this type of disease and led to the identification of new serum markers in the diagnosis of MPM. These results, if confirmed in a larger series, may have a strong impact in this area, because early detection of this cancer in people at high risk could significantly improve the course of the disease and the clinical approach to an individualized therapy.
Cancer Cell Metabolism | 2018
I Dell’anno; Elisa Barone; Irene Lepori; L Migliore; S Agostini; Ombretta Melaiu; L Poliseno; Federica Gemignani; Stefano Landi
Introduction RAN is a member of RAS superfamily of GTPases involved in a varied range of cellular processes. Although it is widely demonstrated RAN is overexpressed in many human tumours having an essential role in malignant cell survival and cancer progression, little is known about its role in Malignant Pleural Mesothelioma (MPM). Previous studies showed the RAN gene is upregulated in mesothelioma tissues and cell lines, so it might be involved in carcinogenesis of MPM. We aimed to explore the functional role of RAN in MPM cell lines and its likely use as co-target in mesothelioma treatment. Material and methods The role of RAN in MPM tumorigenesis was investigated through RNA interference, on a panel of one mesothelial cell line (Met-5A) and four MPM cell lines (Mero-14, Mero-25, Istmes-2 and NCI-H28). After monitoring gene knockdown, at both the mRNA and protein levels, a phenotypic study was performed through Caspase-3/7, Sulforhodamine B, Wound-Healing and Colony Formation assays. Flow cytometry was employed to monitor cell cycle. To validate data from siRNA experiments, two different siRNA were independently used to target RAN. The gene was also knocked-out using a lentiviral CRISPR/Cas9 system in Mero-14. Cas9 endonuclease and gRNA were transduced by two different lentiviral transfer vectors.The doxycycline-regulated Cas9 induction was followed by DNA, RNA and proteins extraction to confirm the occurrence of gene disruption. TIDE analysis was carried out to monitor targeted mutations triggered by the genome editing. Results and discussions The siRNA-mediated knockdown was confirmed at both the mRNA and protein level in all cell lines. The silencing caused a statistically significant decrease of proliferation rate and clonogenicity in Mero-14, Mero-25 and Istmes-2.The migration ability was affected in Met-5A and Istmes-2. An increase in apoptosis was observed in all cell lines, being statistically significant only in the malignant ones. Flow cytometry analysis showed an increase of cells in G0/G1 phase and a decrease of cells in S phase, being significant in Mero-14 cell line only. RAN knock-out has been confirmed at both the mRNA and protein level, whereas the TIDE analysis is still ongoing. Conclusion This study showed that MFAP5 is a novel myoepithelial cell marker that appears to be up-regulated in duct epithelium in DCIS and IC-NST during tumourogenesis and that its cytoplasmic expression in invasive tumours seems to have apoor prognostic role manifested by its association with poor prognostic parameters such as high grade, late stage,lymph node invasion and increased MVD.