Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ömer Faruk Ertuğrul is active.

Publication


Featured researches published by Ömer Faruk Ertuğrul.


Applied Soft Computing | 2015

Two novel local binary pattern descriptors for texture analysis

Yılmaz Kaya; Ömer Faruk Ertuğrul; Ramazan Tekin

In this study, two novel local binary patterns were proposed.First one is based on spatial relations between neighbors with a distance parameter.The second is based on relations between a reference pixel and its neighbor on the same orientation.Two approaches are improved to detect special patterns in images.The results show that the proposed approaches can be used in image processing areas. The recent developments in the image quality, storage and data transmission capabilities increase the importance of texture analysis, which plays an important role in computer vision and image processing. Local binary pattern (LBP) is an effective statistical texture descriptor, which has successful applications in texture classification. In this paper, two novel descriptors were proposed to search different patterns in images built on LBP. One of them is based on the relations between the sequential neighbors with a specified distance and the other one is based on determining the neighbors in the same orientation through central pixel parameter. These descriptors are tested with the Brodatz-1, Brodatz-2, Butterfly and Kylberg datasets to show the applicability of the proposed nLBPd and dLBPα descriptors. The proposed methods are also compared with classical LBP. The average accuracies obtained by ANN with 10 fold cross validation, which are 99.26% (LBPu2 and nLBPd), 94.44% (dLBPα), 95.71% ( n L B P d u 2 ) and %99.64 (nLBPd), for Brodatz-1, Brodatz-2, Butterfly and Kylberg datasets, respectively, show that the proposed methods outperform significant accuracies.


Expert Systems With Applications | 2016

Detection of Parkinson's disease by Shifted One Dimensional Local Binary Patterns from gait

Ömer Faruk Ertuğrul; Yılmaz Kaya; Ramazan Tekin; Mehmet Nuri Almalı

This study showed that the PD can be diagnosed by using sensors attached at underfoot from gait.Feature extracted by Shifted 1D-LBP, which is sensitive to local changes in time signals.Shifted 1D-LBP has a simple algorithm. It can be used in real time applications.Obtained detection accuracy is 88.8889%.The accuracy results were compared with the results of previous studies in literature. The Parkinsons disease (PD) is one of the most common diseases, especially in elderly people. Although the previous studies showed that the PD can be diagnosed by expert systems through its cardinal symptoms such as the tremor, muscular rigidity, disorders of movements and voice, it was reported that the presented approaches, which utilize simple motor tasks, were limited and lack of standardization. To achieve a standard approach in PD detection, an approach, which is built on shifted one-dimensional local binary patterns (Shifted 1D-LBP) and machine learning methods, was proposed. Shifted 1D-LBP is built on 1D-LBP, which is sensitive to local changes in a signal. In 1D-LBP the positions of neighbors around center data are constant and therefore, the number of patterns that can be exacted by it is limited. This drawback was solved by Shifted 1D-LBP by changeable positions of neighbors. In evaluation and validation stages, the Gait in Parkinsons Disease (gaitpdb) dataset, which consists of three gait datasets that were recorded in different tasks or experiment protocols, were employed. Statistical features were exacted from formed histograms of gait signals transformed by Shifted 1D-LBP. Whole features and selected features were classified by machine learning methods. Obtained results were compared with statistical features exacted from signals in both time and frequency domains and results reported in the literature. Achieved results showed that the proposed approach can be successfully employed in PD detection from gait. This work is not only an attempt to develop a PD detection method, but also a general-purpose approach that is based on detecting local changes in time ordered signals.


Medical & Biological Engineering & Computing | 2016

A novel approach for SEMG signal classification with adaptive local binary patterns

Ömer Faruk Ertuğrul; Yılmaz Kaya; Ramazan Tekin

AbstractFeature extraction plays a major role in the pattern recognition process, and this paper presents a novel feature extraction approach, adaptive local binary pattern (aLBP). aLBP is built on the local binary pattern (LBP), which is an image processing method, and one-dimensional local binary pattern (1D-LBP). In LBP, each pixel is compared with its neighbors. Similarly, in 1D-LBP, each data in the raw is judged against its neighbors. 1D-LBP extracts feature based on local changes in the signal. Therefore, it has high a potential to be employed in medical purposes. Since, each action or abnormality, which is recorded in SEMG signals, has its own pattern, and via the 1D-LBP these (hidden) patterns may be detected. But, the positions of the neighbors in 1D-LBP are constant depending on the position of the data in the raw. Also, both LBP and 1D-LBP are very sensitive to noise. Therefore, its capacity in detecting hidden patterns is limited. To overcome these drawbacks, aLBP was proposed. In aLBP, the positions of the neighbors and their values can be assigned adaptively via the down-sampling and the smoothing coefficients. Therefore, the potential to detect (hidden) patterns, which may express an illness or an action, is really increased. To validate the proposed feature extraction approach, two different datasets were employed. Achieved accuracies by the proposed approach were higher than obtained results by employed popular feature extraction approaches and the reported results in the literature. Obtained accuracy results were brought out that the proposed method can be employed to investigate SEMG signals. In summary, this work attempts to develop an adaptive feature extraction scheme that can be utilized for extracting features from local changes in different categories of time-varying signals.


Neural Computing and Applications | 2017

Extreme learning machine model for water network management

Ahmed M. A. Sattar; Ömer Faruk Ertuğrul; Bahram Gharabaghi; Edward A. McBean; Jiuwen Cao

A novel failure rate prediction model is developed by the extreme learning machine (ELM) to provide key information needed for optimum ongoing maintenance/rehabilitation of a water network, meaning the estimated times for the next failures of individual pipes within the network. The developed ELM model is trained using more than 9500 instances of pipe failure in the Greater Toronto Area, Canada from 1920 to 2005 with pipe attributes as inputs, including pipe length, diameter, material, and previously recorded failures. The models show recent, extensive usage of pipe coating with cement mortar and cathodic protection has significantly increased their lifespan. The predictive model includes the pipe protection method as pipe attributes and can reflect in its predictions, the effect of different pipe protection methods on the expected time to the next pipe failure. The developed ELM has a superior prediction accuracy relative to other available machine learning algorithms such as feed-forward artificial neural network that is trained by backpropagation, support vector regression, and non-linear regression. The utility of the models provides useful inputs when planning and budgeting for watermain inspection, maintenance, and rehabilitation.


Neural Computing and Applications | 2017

A novel machine learning method based on generalized behavioral learning theory

Ömer Faruk Ertuğrul; Mehmet Emin Tagluk

Learning is an important talent for understanding the nature and accordingly controlling behavioral characteristics. Behavioral learning theories are one of the popular learning theories which are built on experimental findings. These theories are widely applied in psychotherapy, psychology, neurology as well as in advertisements and robotics. There is an abundant literature associated with understanding learning mechanism, and various models have been proposed for the realization of learning theories. Nevertheless, none of those models are able to satisfactorily simulate the concept of classical conditioning. In this study, popular behavioral learning theories were firstly simplified and the contentious issues with them were clarified by conducting intuitive experiments. The experimental results and information available in the literature were evaluated, and behavioral learning theories were jointly generalized accordingly. The proposed model, to our knowledge, is the first one that possesses not only modeling all features of classical conditioning but also including all features with behavioral theories such as Pavlov, Watson, Guthrie, Thorndike and Skinner. Also, a microcontroller card (Arduino Mega 2560) was used to validate the applicability of the proposed model in robotics. Obtained results showed that this generalized model has a high capacity for modeling human learning. Then, the proposed learning model was further improved to be utilized as a machine learning method that can continuously learn similar to human being. The result obtained from the use of this method, in terms of computational cost and accuracy, showed that the proposed method can be successfully employed in machine learning, especially for time ordered datasets.


signal processing and communications applications conference | 2013

EMG signal classification by extreme learning machine

Ömer Faruk Ertuğrul; Mehmet Emin Tagluk; Yılmaz Kaya; Ramazan Tekin

From disease detection to action assessment EMG signals are used variety of field. Miscellaneous studies have been conducted toward analysis of EMG signals. In this study some statistical features of signal were derived, the best evocative features were selected via Linear Discriminant Analysis (LDA) and feature vectors were constructed. This analytic feature vectors were classified through Extreme Learning Machine (ELM). 8 channel EMG signals recorded from 10 normal and 10 aggressive actions were used as an example. By cross-comparison of the obtained results to the ones obtained via various feature identifying methods (AR coefficients, wavelet energy and entropy) and classification methods (NB, SVM, LR, ANN, PART, Jrip, J48 and LMT) the success of the proposed method was determined.


intelligent information systems | 2014

Adaptive Texture Energy Measure Method

Ömer Faruk Ertuğrul

Recent developments in image quality, data storage, and computational capacity have heightened the need for texture analysis in image process. To date various methods have been developed and introduced for assessing textures in images. One of the most popular texture analysis methods is the Texture Energy Measure (TEM) and it has been used for detecting edges, levels, waves, spots and ripples by employing predefined TEM masks to images. Despite several success- ful studies, TEM has a number of serious weaknesses in use. The major drawback is; the masks are predefined therefore they cannot be adapted to image. A new method, Adaptive Texture Energy Measure Method (aTEM), was offered to over- come this disadvantage of TEM by using adaptive masks by adjusting the contrast, sharpening and orientation angle of the mask. To assess the applicability of aTEM, it is compared with TEM. The accuracy of the classification of butterfly, flower seed and Brodatz datasets are 0.08, 0.3292 and 0.3343, respectively by TEM and 0.0053, 0.2417 and 0.3153, respectively by aTEM. The results of this study indicate that aTEM is a successful method for texture analysis.


Neural Networks | 2018

A novel type of activation function in artificial neural networks: Trained activation function

Ömer Faruk Ertuğrul

Determining optimal activation function in artificial neural networks is an important issue because it is directly linked with obtained success rates. But, unfortunately, there is not any way to determine them analytically, optimal activation function is generally determined by trials or tuning. This paper addresses, a simpler and a more effective approach to determine optimal activation function. In this approach, which can be called as trained activation function, an activation function was trained for each particular neuron by linear regression. This training process was done based on the training dataset, which consists the sums of inputs of each neuron in the hidden layer and desired outputs. By this way, a different activation function was generated for each neuron in the hidden layer. This approach was employed in random weight artificial neural network (RWN) and validated by 50 benchmark datasets. Achieved success rates by RWN that used trained activation functions were higher than obtained success rates by RWN that used traditional activation functions. Obtained results showed that proposed approach is a successful, simple and an effective way to determine optimal activation function instead of trials or tuning in both randomized single and multilayer ANNs.


Security and Communication Networks | 2016

A novel approach for spam email detection based on shifted binary patterns

Yılmaz Kaya; Ömer Faruk Ertuğrul

Advances in communication allow people flexibility to communicate in various ways. Electronic mail (email) is one of the most used communication methods for personal or business purposes. However, it brings one of the most tackling issues, called spam email, which also raises concerns about data safety. Thus, the requirement of detecting spams is crucial for keeping the users safe and saving them from the waste of time while tackling those issues. In this study, an effective approach based on the probability of the usage of the characters that has similar orders with respect to their UTF-8 value by employing shifted one-dimensional local binary pattern (shifted-1D-LBP) was used to extract quantitative features from emails for spam email detection. Shifted-1D-LBP, which can be described as an ordered set of binary comparisons of the center value with its neighboring values, is a content-based approach to spam detection with low-level information. To validate the performance of the proposed approach, three benchmark corpora, Spamassasian, Ling-Spam, and TREC email corpuses, were used. The average classification accuracies of the proposed approach were 92.34%, 92.57%, and 95.15%, respectively. Analysis and promising experimental results indicated that the proposed approach was a very competitive feature extraction method in spam email filtering. Copyright


2016 4th International Istanbul Smart Grid Congress and Fair (ICSG) | 2016

Smart city planning by estimating energy efficiency of buildings by extreme learning machine

Ömer Faruk Ertuğrul; Yılmaz Kaya

Estimation of energy efficiency is one of the major issues in smart city planning. Although, there are some papers about estimation of energy efficiency of the buildings, there is still a requirement of an effective method that can be used in all climatic zones. Therefore, extreme learning method (ELM), which is a training method for single hidden layer neural network, was employed in the dataset that contains the properties of buildings such as shape, area and height and cooling and heating loads were calculated. Achieved results by ELM were compared with the results in the literature and the results obtained by some popular machine learning methods such as artificial neural network, linear regression, and etc. Obtained results by ELM found acceptable.

Collaboration


Dive into the Ömer Faruk Ertuğrul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge