Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ömer H. Yilmaz is active.

Publication


Featured researches published by Ömer H. Yilmaz.


Cell | 2005

SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells

Mark J. Kiel; Ömer H. Yilmaz; Toshihide Iwashita; Osman H. Yilmaz; Cox Terhorst; Sean J. Morrison

To improve our ability to identify hematopoietic stem cells (HSCs) and their localization in vivo, we compared the gene expression profiles of highly purified HSCs and non-self-renewing multipotent hematopoietic progenitors (MPPs). Cell surface receptors of the SLAM family, including CD150, CD244, and CD48, were differentially expressed among functionally distinct progenitors. HSCs were highly purified as CD150(+)CD244(-)CD48(-) cells while MPPs were CD244(+)CD150(-)CD48(-) and most restricted progenitors were CD48(+)CD244(+)CD150(-). The primitiveness of hematopoietic progenitors could thus be predicted based on the combination of SLAM family members they expressed. This is the first family of receptors whose combinatorial expression precisely distinguishes stem and progenitor cells. The ability to purify HSCs based on a simple combination of SLAM receptors allowed us to identify HSCs in tissue sections. Many HSCs were associated with sinusoidal endothelium in spleen and bone marrow, though some HSCs were associated with endosteum. HSCs thus occupy multiple niches, including sinusoidal endothelium in diverse tissues.


Nature | 2006

Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells

Ömer H. Yilmaz; Riccardo Valdez; Brian K. Theisen; Wei Guo; David O. Ferguson; Hong Wu; Sean J. Morrison

Recent advances have highlighted extensive phenotypic and functional similarities between normal stem cells and cancer stem cells. This raises the question of whether disease therapies can be developed that eliminate cancer stem cells without eliminating normal stem cells. Here we address this issue by conditionally deleting the Pten tumour suppressor gene in adult haematopoietic cells. This led to myeloproliferative disease within days and transplantable leukaemias within weeks. Pten deletion also promoted haematopoietic stem cell (HSC) proliferation. However, this led to HSC depletion via a cell-autonomous mechanism, preventing these cells from stably reconstituting irradiated mice. In contrast to leukaemia-initiating cells, HSCs were therefore unable to maintain themselves without Pten. These effects were mostly mediated by mTOR as they were inhibited by rapamycin. Rapamycin not only depleted leukaemia-initiating cells but also restored normal HSC function. Mechanistic differences between normal stem cells and cancer stem cells can thus be targeted to deplete cancer stem cells without damaging normal stem cells.


Nature | 2012

mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake

Ömer H. Yilmaz; Pekka Katajisto; Dudley W. Lamming; Yetis Gultekin; Khristian E. Bauer-Rowe; Shomit Sengupta; Kivanc Birsoy; Abdulmetin Dursun; V. Onur Yilmaz; Martin K. Selig; G. Petur Nielsen; Mari Mino-Kenudson; Lawrence R. Zukerberg; Atul K. Bhan; Vikram Deshpande; David M. Sabatini

How adult tissue stem and niche cells respond to the nutritional state of an organism is not well understood. Here we find that Paneth cells, a key constituent of the mammalian intestinal stem-cell (ISC) niche, augment stem-cell function in response to calorie restriction. Calorie restriction acts by reducing mechanistic target of rapamycin complex 1 (mTORC1) signalling in Paneth cells, and the ISC-enhancing effects of calorie restriction can be mimicked by rapamycin. Calorie intake regulates mTORC1 in Paneth cells, but not ISCs, and forced activation of mTORC1 in Paneth cells during calorie restriction abolishes the ISC-augmenting effects of the niche. Finally, increased expression of bone stromal antigen 1 (Bst1) in Paneth cells—an ectoenzyme that produces the paracrine factor cyclic ADP ribose—mediates the effects of calorie restriction and rapamycin on ISC function. Our findings establish that mTORC1 non-cell-autonomously regulates stem-cell self-renewal, and highlight a significant role of the mammalian intestinal niche in coupling stem-cell function to organismal physiology.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense.

Kara G. Lassen; Petric Kuballa; Kara L. Conway; Khushbu K. Patel; Christine E. Becker; Joanna M. Peloquin; Eduardo J. Villablanca; Jason M. Norman; Ta-Chiang Liu; Robert J. Heath; Morgan L. Becker; Lola Fagbami; Heiko Horn; Johnathan Mercer; Ömer H. Yilmaz; Jacob D. Jaffe; Alykhan F. Shamji; Atul K. Bhan; Steven A. Carr; Mark J. Daly; Herbert W. Virgin; Stuart L. Schreiber; Thaddeus S. Stappenbeck; Ramnik J. Xavier

Significance Although advances in human genetics have shaped our understanding of many complex diseases, little is known about the mechanism of action of alleles that influence disease. By using mice expressing a Crohn disease (CD)-associated risk polymorphism (Atg16L1 T300A), we show that Atg16L1 T300A-expressing mice demonstrate abnormalities in Paneth cells (similar to patients with the risk polymorphism) and goblet cells. We show that Atg16L1 T300A protein is more susceptible to caspase-mediated cleavage than WT autophagy related 16-like 1 (Atg16L1), resulting in decreased protein stability and effects on antibacterial autophagy and inflammatory cytokine production. We also identify interacting proteins that contribute to autophagy-dependent immune responses. Understanding how ATG16L1 T300A modulates autophagy-dependent immune responses sheds light on the mechanisms that underlie initiation and progression of CD. A coding polymorphism (Thr300Ala) in the essential autophagy gene, autophagy related 16-like 1 (ATG16L1), confers increased risk for the development of Crohn disease, although the mechanisms by which single disease-associated polymorphisms contribute to pathogenesis have been difficult to dissect given that environmental factors likely influence disease initiation in these patients. Here we introduce a knock-in mouse model expressing the Atg16L1 T300A variant. Consistent with the human polymorphism, T300A knock-in mice do not develop spontaneous intestinal inflammation, but exhibit morphological defects in Paneth and goblet cells. Selective autophagy is reduced in multiple cell types from T300A knock-in mice compared with WT mice. The T300A polymorphism significantly increases caspase 3- and caspase 7-mediated cleavage of Atg16L1, resulting in lower levels of full-length Atg16Ll T300A protein. Moreover, Atg16L1 T300A is associated with decreased antibacterial autophagy and increased IL-1β production in primary cells and in vivo. Quantitative proteomics for protein interactors of ATG16L1 identified previously unknown nonoverlapping sets of proteins involved in ATG16L1-dependent antibacterial autophagy or IL-1β production. These findings demonstrate how the T300A polymorphism leads to cell type- and pathway-specific disruptions of selective autophagy and suggest a mechanism by which this polymorphism contributes to disease.


Nature | 2016

High-fat diet enhances stemness and tumorigenicity of intestinal progenitors

Semir Beyaz; Miyeko D. Mana; Jatin Roper; Dmitriy Kedrin; Assieh Saadatpour; Sue-Jean Hong; Khristian E. Bauer-Rowe; Michael E. Xifaras; Adam Akkad; Erika Arias; Luca Pinello; Yarden Katz; Shweta Shinagare; Monther Abu-Remaileh; Maria M. Mihaylova; Dudley W. Lamming; Rizkullah Dogum; Guoji Guo; George W. Bell; Martin K. Selig; G. Petur Nielsen; Nitin Gupta; Cristina R. Ferrone; Vikram Deshpande; Guo-Cheng Yuan; Stuart H. Orkin; David M. Sabatini; Ömer H. Yilmaz

Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we show that high-fat diet (HFD)-induced obesity augments the numbers and function of Lgr5+ intestinal stem cells of the mammalian intestine. Mechanistically, a HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-δ) signature in intestinal stem cells and progenitor cells (non-intestinal stem cells), and pharmacological activation of PPAR-δ recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-δ-dependent manner. Notably, HFD- and agonist-activated PPAR-δ signalling endow organoid-initiating capacity to progenitors, and enforced PPAR-δ signalling permits these progenitors to form in vivo tumours after loss of the tumour suppressor Apc. These findings highlight how diet-modulated PPAR-δ activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumours.


Cell Stem Cell | 2010

mTOR Activation Induces Tumor Suppressors that Inhibit Leukemogenesis and Deplete Hematopoietic Stem Cells after Pten Deletion

Jae Y. Lee; Daisuke Nakada; Ömer H. Yilmaz; Zuzana Tothova; Nancy M. Joseph; Megan S. Lim; D. Gary Gilliland; Sean J. Morrison

Pten deficiency depletes hematopoietic stem cells (HSCs) but expands leukemia-initiating cells, and the mTOR inhibitor, rapamycin, blocks these effects. Understanding the opposite effects of mTOR activation on HSCs versus leukemia-initiating cells could improve antileukemia therapies. We found that the depletion of Pten-deficient HSCs was not caused by oxidative stress and could not be blocked by N-acetyl-cysteine. Instead, Pten deletion induced, and rapamycin attenuated, the expression of p16(Ink4a) and p53 in HSCs, and p19(Arf) and p53 in other hematopoietic cells. p53 suppressed leukemogenesis and promoted HSC depletion after Pten deletion. p16(Ink4a) also promoted HSC depletion but had a limited role suppressing leukemogenesis. p19(Arf) strongly suppressed leukemogenesis but did not deplete HSCs. Secondary mutations attenuated this tumor suppressor response in some leukemias that arose after Pten deletion. mTOR activation therefore depletes HSCs by a tumor suppressor response that is attenuated by secondary mutations in leukemogenic clones.


Nature Genetics | 2013

MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors

Kivanc Birsoy; Tim Wang; Richard Possemato; Ömer H. Yilmaz; Catherine E Koch; Walter W. Chen; Amanda W. Hutchins; Yetis Gultekin; Tim R. Peterson; Jan E. Carette; Thijn R. Brummelkamp; Clary B. Clish; David M. Sabatini

There is increasing evidence that oncogenic transformation modifies the metabolic program of cells. A common alteration is the upregulation of glycolysis, and efforts to target glycolytic enzymes for anticancer therapy are under way. Here, we performed a genome-wide haploid genetic screen to identify resistance mechanisms to 3-bromopyruvate (3-BrPA), a drug candidate that inhibits glycolysis in a poorly understood fashion. We identified the SLC16A1 gene product, MCT1, as the main determinant of 3-BrPA sensitivity. MCT1 is necessary and sufficient for 3-BrPA uptake by cancer cells. Additionally, SLC16A1 mRNA levels are the best predictor of 3-BrPA sensitivity and are most elevated in glycolytic cancer cells. Furthermore, forced MCT1 expression in 3-BrPA–resistant cancer cells sensitizes tumor xenografts to 3-BrPA treatment in vivo. Our results identify a potential biomarker for 3-BrPA sensitivity and provide proof of concept that the selectivity of cancer-expressed transporters can be exploited for delivering toxic molecules to tumors.


Gastroenterology | 2013

Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection

Kara L. Conway; Petric Kuballa; Joo Hye Song; Khushbu K. Patel; Adam B. Castoreno; Ömer H. Yilmaz; Humberto Jijon; Mei Zhang; Leslie N. Aldrich; Eduardo J. Villablanca; Joanna M. Peloquin; Gautam Goel; In–Ah Lee; Emiko Mizoguchi; Hai Ning Shi; Atul K. Bhan; Stanley Y. Shaw; Stuart L. Schreiber; Herbert W. Virgin; Alykhan F. Shamji; Thaddeus S. Stappenbeck; Hans-Christian Reinecker; Ramnik J. Xavier

BACKGROUND & AIMS Intestinal epithelial cells aid in mucosal defense by providing a physical barrier against entry of pathogenic bacteria and secreting antimicrobial peptides (AMPs). Autophagy is an important component of immune homeostasis. However, little is known about its role in specific cell types during bacterial infection in vivo. We investigated the role of autophagy in the response of intestinal epithelial and antigen-presenting cells to Salmonella infection in mice. METHODS We generated mice deficient in Atg16l1 in epithelial cells (Atg16l1(f/f) × Villin-cre) or CD11c(+) cells (Atg16l1(f/f) × CD11c-cre); these mice were used to assess cell type-specific antibacterial autophagy. All responses were compared with Atg16l1(f/f) mice (controls). Mice were infected with Salmonella enterica serovar typhimurium; cecum and small-intestine tissues were collected for immunofluorescence, histology, and quantitative reverse-transcription polymerase chain reaction analyses of cytokines and AMPs. Modulators of autophagy were screened to evaluate their effects on antibacterial responses in human epithelial cells. RESULTS Autophagy was induced in small intestine and cecum after infection with S typhimurium, and required Atg16l1. S typhimurium colocalized with microtubule-associated protein 1 light chain 3β (Map1lc3b or LC3) in the intestinal epithelium of control mice but not in Atg16l1(f/f) × Villin-cre mice. Atg16l1(f/f) × Villin-cre mice also had fewer Paneth cells and abnormal granule morphology, leading to reduced expression of AMPs. Consistent with these defective immune responses, Atg16l1(f/f) × Villin-cre mice had increased inflammation and systemic translocation of bacteria compared with control mice. In contrast, we observed few differences between Atg16l1(f/f) × CD11c-cre and control mice. Trifluoperazine promoted autophagy and bacterial clearance in HeLa cells; these effects were reduced upon knockdown of ATG16L1. CONCLUSIONS Atg16l1 regulates autophagy in intestinal epithelial cells and is required for bacterial clearance. It also is required to prevent systemic infection of mice with enteric bacteria.


Blood | 2009

Aldehyde dehydrogenase 1a1 is dispensable for stem cell function in the mouse hematopoietic and nervous systems

Boaz P. Levi; Ömer H. Yilmaz; Gregg Duester; Sean J. Morrison

High levels of aldehyde dehydrogenase (ALDH) activity have been proposed to be a common feature of stem cells. Adult hematopoietic, neural, and cancer stem cells have all been reported to have high ALDH activity, detected using Aldefluor, a fluorogenic substrate for ALDH. This activity has been attributed to Aldh1a1, an enzyme that is expressed at high levels in stem cells and that has been suggested to regulate stem cell function. Nonetheless, Aldh1a1 function in stem cells has never been tested genetically. We observed that Aldh1a1 was preferentially expressed in mouse hematopoietic stem cells (HSCs) and expression increased with age. Hematopoietic cells from Aldh1a1-deficient mice exhibited increased sensitivity to cyclophosphamide in a non-cell-autonomous manner, consistent with its role in cyclophosphamide metabolism in the liver. However, Aldh1a1 deficiency did not affect hematopoiesis, HSC function, or the capacity to reconstitute irradiated recipients in young or old adult mice. Aldh1a1 deficiency also did not affect Aldefluor staining of hematopoietic cells. Finally, Aldh1a1 deficiency did not affect the function of stem cells from the adult central or peripheral nervous systems. Aldh1a1 is not a critical regulator of adult stem cell function or Aldefluor staining in mice.


Nature | 2017

A single-cell survey of the small intestinal epithelium

Adam L. Haber; Moshe Biton; Noga Rogel; Rebecca H. Herbst; Karthik Shekhar; Christopher Smillie; Grace Burgin; Toni Delorey; Michael R. Howitt; Yarden Katz; Itay Tirosh; Semir Beyaz; Danielle Dionne; Mei Zhang; Raktima Raychowdhury; Wendy S. Garrett; Orit Rozenblatt-Rosen; Hai Ning Shi; Ömer H. Yilmaz; Ramnik J. Xavier; Aviv Regev

Intestinal epithelial cells absorb nutrients, respond to microbes, function as a barrier and help to coordinate immune responses. Here we report profiling of 53,193 individual epithelial cells from the small intestine and organoids of mice, which enabled the identification and characterization of previously unknown subtypes of intestinal epithelial cell and their gene signatures. We found unexpected diversity in hormone-secreting enteroendocrine cells and constructed the taxonomy of newly identified subtypes, and distinguished between two subtypes of tuft cell, one of which expresses the epithelial cytokine Tslp and the pan-immune marker CD45, which was not previously associated with non-haematopoietic cells. We also characterized the ways in which cell-intrinsic states and the proportions of different cell types respond to bacterial and helminth infections: Salmonella infection caused an increase in the abundance of Paneth cells and enterocytes, and broad activation of an antimicrobial program; Heligmosomoides polygyrus caused an increase in the abundance of goblet and tuft cells. Our survey highlights previously unidentified markers and programs, associates sensory molecules with cell types, and uncovers principles of gut homeostasis and response to pathogens.

Collaboration


Dive into the Ömer H. Yilmaz's collaboration.

Top Co-Authors

Avatar

David M. Sabatini

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean J. Morrison

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Akkad

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Naniye Malli Cetinbas

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge