Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Omer Nur is active.

Publication


Featured researches published by Omer Nur.


Nanotechnology | 2009

Zinc oxide nanorod based photonic devices: recent progress in growth, light?emitting diodes and lasers

Magnus Willander; Omer Nur; Q. X. Zhao; L. L. Yang; M. Lorenz; Bingqiang Cao; J. Zúñiga–Pérez; C. Czekalla; G Zimmermann; Marius Grundmann; A. Bakin; Arne Behrends; M. Al-Suleiman; A. El-Shaer; A. Che Mofor; B. Postels; A. Waag; Nikos Boukos; A. Travlos; Ho-Sang Kwack; J Guinard; D. Le Si Dang

Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence characteristics aimed at the development of white LEDs are demonstrated. Although some of the presented LEDs show visible emission for applied biases in excess of 10 V, optimized structures are expected to provide the same emission at much lower voltage. Finally, lasing from ZnO nanorods is briefly reviewed. An example of a recent whispering gallery mode (WGM) lasing from ZnO is demonstrated as a way to enhance the stimulated emission from small size structures.


Materials | 2010

Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices

Magnus Willander; Omer Nur; J. R. Sadaf; Muhammad Israr Qadir; Saima Zaman; Ahmed Zainelabdin; Nargis Bano; I. Hussain

Zinc oxide (ZnO) is a strong luminescent material, as are several polymers. These two materials have distinct drawbacks and advantages, and they can be combined to form nanostructures with many important applications, e.g., large-area white lighting. This paper discusses the origin of visible emission centers in ZnO nanorods grown with different approaches. White light emitting diodes (LEDs) were fabricated by combining n-ZnO nanorods and hollow nanotubes with different p-type materials to form heterojunctions. The p-type component of the hybrids includes p-SiC, p-GaN, and polymers. We conclude by analyzing the electroluminescence of the different light emitting diodes we fabricated. The observed optical, electrical, and electro-optical characteristics of these LEDs are discussed with an emphasis on the deep level centers that cause the emission.


Nanoscale Research Letters | 2011

The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes

Naveed ul Hassan Alvi; Kamran ul Hasan; Omer Nur; Magnus Willander

In this article, the electroluminescence (EL) spectra of zinc oxide (ZnO) nanotubes/p-GaN light emitting diodes (LEDs) annealed in different ambients (argon, air, oxygen, and nitrogen) have been investigated. The ZnO nanotubes by aqueous chemical growth (ACG) technique on p-GaN substrates were obtained. The as-grown ZnO nanotubes were annealed in different ambients at 600°C for 30 min. The EL investigations showed that air, oxygen, and nitrogen annealing ambients have strongly affected the deep level emission bands in ZnO. It was concluded from the EL investigation that more than one deep level defect is involved in the red emission appearing between 620 and 750 nm and that the red emission in ZnO can be attributed to oxygen interstitials (Oi) appearing in the range from 620 nm (1.99 eV) to 690 nm (1.79 eV), and to oxygen vacancies (Vo) appearing in the range from 690 nm (1.79 eV) to 750 nm (1.65 eV). The annealing ambients, especially the nitrogen ambient, were also found to greatly influence the color-rendering properties and increase the CRI of the as - grown LEDs from 87 to 96.


Journal of Nanomaterials | 2011

Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method

Gul Amin; Muhammad H. Asif; Ahmed Zainelabdin; Siama Zaman; Omer Nur; Magnus Willander

We investigated the influence of the pH value, precursor concentration (C), growth time and temperature on the morphology of zinc oxide (ZnO) nanostructures. The pH of the starting solution was varied from1.8 to 12.5. It was found that the final pH reaches an inherent value of 6.6 independently of the initial pH solution. Various ZnO structures of nanotetrapod-like, flower-like, and urchin-like morphology were obtained at alkaline pH (8 to 12.5) whereas for pH solution lower than 8 rod-like nanostructures occurred. Moreover, we observed the erosion of the nanorods for a pH value less than 4.6. By changing the concentrations the density and size were also varied. On going from a high (C > 400mM) to lower (C < 25mM) C, the resulted ZnO nanostructures change from a film to nanorods (NRs) and finally nanowires (NWs). It was also found that the length and diameter of ZnO NRs follow a linear relation with time up to 10 hours, above which no further increase was observed. Finally the effect of growth temperature was seen as an influence on the aspect ratio.


Biosensors and Bioelectronics | 2010

Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose

Muhammad H. Asif; Syed M. Usman Ali; Omer Nur; Magnus Willander; Cecilia Brännmark; Peter Strålfors; Ulrika H. Englund; Fredrik Elinder; Bengt Danielsson

In this article, we report a functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. To adjust the sensor for intracellular glucose measurements, we grew hexagonal ZnO nanorods on the tip of a silver-covered borosilicate glass capillary (0.7 microm diameter) and coated them with the enzyme glucose oxidase. The enzyme-coated ZnO nanorods exhibited a glucose-dependent electrochemical potential difference versus an Ag/AgCl reference microelectrode. The potential difference was linear over the concentration range of interest (0.5-1000 microM). The measured glucose concentration in human adipocytes or frog oocytes using our ZnO-nanorod sensor was consistent with values of glucose concentration reported in the literature; furthermore, the sensor was able to show that insulin increased the intracellular glucose concentration. This nanoelectrode device demonstrates a simple technique to measure intracellular glucose concentration.


Journal of Materials Chemistry | 2009

Zinc oxide nanowires: controlled low temperature growth and some electrochemical and optical nano-devices

Magnus Willander; L. L. Yang; A. Wadeasa; Syed M. Usman Ali; Muhammad H. Asif; Q. X. Zhao; Omer Nur

In this paper we present our new findings on the growth, characterization and nano-devices based on ZnO nanowires. We will limit the scope of this article to low temperature grown ZnO nanowires, due to the fact that low temperature growth is suitable for many applications. On growth and size control we will present our methodology for the growth of ZnO nanowires on Si substrates using low temperature techniques. The effect of the annealing on these low temperature grown ZnO nanowires is investigated and discussed. We then present our results on the surface recombination velocity of ZnO nanowires. This will be followed by the demonstration of new prototype nano-devices. These nano-devices include the demonstration of two new electrochemical nano-sensors. These are the extended gate glucose sensor and the calcium ion selective sensor using ionophore membrane coating on ZnO nanowires. Finally we will present results from light emitting diodes (LEDs) based on our ZnO nanowires grown on p-type organic semiconductors. The effect of the interlayer design of this hybrid organic–inorganic LED on the emission properties is highlighted.


Journal of Applied Physics | 2010

ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method

Nargis Bano; Siama Zaman; Ahmed Zainelabdin; S. Hussain; I. Hussain; Omer Nur; Magnus Willander

We demonstrate white light luminescence from ZnO-organic hybrid light emitting diodes grown at 90 °C on flexible plastic substrate by aqueous chemical growth. The configuration used for the ZnO-organic hybrid white light emitting diodes (WLEDs) consists of a layer of poly (9, 9-dioctylfluorene) (PFO) on poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate) coated plastic with top ZnO nanorods. Structural, electrical, and optical properties of these WLEDs were measured and analyzed. Room temperature electroluminescence spectrum reveals a broad emission band covering the range from 420 to 750 nm. In order to distinguish the white light components and contribution of the PFO layer we used a Gaussian function to simulate the experimental data. Color coordinates measurement of the WLED reveals that the emitted light has a white impression. The color rendering index and correlated color temperature of the WLED were calculated to be 68 and 5800 K, respectively.


New Journal of Physics | 2009

Zinc oxide nanorod-based heterostructures on solid and soft substrates for white-light-emitting diode applications

Magnus Willander; Omer Nur; Nargis Bano; K. Sultana

ZnO nanorods with excellent optical and electro-optical emission characteristics were grown using high- and low-temperature techniques on solid and soft substrate materials. The solid crystalline substrates included p-4H-SiC and p-GaN, while the soft amorphous substrates included p-type polymers deposited on glass and flexible plastic. Two different growth approaches were used to produce these samples. We used the vapor–liquid–solid (VLS) technique (high temperature) and aqueous chemical growth (ACG), which is a low-temperature technique. These ZnO nanorod samples were characterized by room temperature photoluminescence (PL) and processed to fabricate light-emitting diodes (LEDs). The LED characteristics were further investigated by I–V and electroluminescence (EL). As observed by PL measurements, all samples revealed a sharp narrow ultraviolet (UV) peak due to band-edge emission, indicating the good crystalline quality of the grown ZnO nanorods. The origin of the different peaks within the visible region was correlated to different deep level defects reported earlier for ZnO. All fabricated LEDs showed EL providing a wide band extended through the whole visible spectrum and hence produced clear white light observable to the naked eye. The emitted color quality investigation showed that superior color quality was manifested in a high color rendering index and stable color under current variation, indicating that these heterojunction and hybrid LEDs have potential for the development of future light sources. The ZnO nanorod-based LEDs grown by low-temperature ACG on glass and flexible plastic can, after further development, be candidates for future large-area white-light sources.


Applied Physics Letters | 2012

Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric

Azam Khan; Mazhar Ali Abbasi; Mushtaque Hussain; Zafar Hussain Ibupoto; Jonas Wissting; Omer Nur; Magnus Willander

This investigation explores piezoelectricity generation from ZnO nanorods, which were grown on silver coated textile cotton fabrics using the low temperature aqueous chemical growth method. The mor ...


Nanoscale Research Letters | 2010

White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting Diode

J. R. Sadaf; Muhammad Qadir Israr; S. Kishwar; Omer Nur; Magnus Willander

We report the fabrication of heterostructure white light–emitting diode (LED) comprised of n-ZnO nanotubes (NTs) aqueous chemically synthesized on p-GaN substrate. Room temperature electroluminescence (EL) of the LED demonstrates strong broadband white emission spectrum consisting of predominating peak centred at 560 nm and relatively weak violet–blue emission peak at 450 nm under forward bias. The broadband EL emission covering the whole visible spectrum has been attributed to the large surface area and high surface states of ZnO NTs produced during the etching process. In addition, comparison of the EL emission colour quality shows that ZnO nanotubes have much better quality than that of the ZnO nanorods. The colour-rendering index of the white light obtained from the nanotubes was 87, while the nanorods-based LED emit yellowish colour.

Collaboration


Dive into the Omer Nur's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Azam Khan

Linköping University

View shared research outputs
Top Co-Authors

Avatar

Gul Amin

Linköping University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Klason

University of Gothenburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge