Omid E. David
Bar-Ilan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Omid E. David.
genetic and evolutionary computation conference | 2014
Omid E. David; Iddo Greental
In recent years, deep learning methods applying unsupervised learning to train deep layers of neural networks have achieved remarkable results in numerous fields. In the past, many genetic algorithms based methods have been successfully applied to training neural networks. In this paper, we extend previous work and propose a GA-assisted method for deep learning. Our experimental results indicate that this GA-assisted approach improves the performance of a deep autoencoder, producing a sparser neural network.
international symposium on neural networks | 2015
Omid E. David; Nathan S. Netanyahu
This paper presents a novel deep learning based method for automatic malware signature generation and classification. The method uses a deep belief network (DBN), implemented with a deep stack of denoising autoencoders, generating an invariant compact representation of the malware behavior. While conventional signature and token based methods for malware detection do not detect a majority of new variants for existing malware, the results presented in this paper show that signatures generated by the DBN allow for an accurate classification of new malware variants. Using a dataset containing hundreds of variants for several major malware families, our method achieves 98.6% classification accuracy using the signatures generated by the DBN. The presented method is completely agnostic to the type of malware behavior that is logged (e.g., API calls and their parameters, registry entries, websites and ports accessed, etc.), and can use any raw input from a sandbox to successfully train the deep neural network which is used to generate malware signatures.
IEEE Transactions on Evolutionary Computation | 2014
Omid E. David; H. Jaap van den Herik; Moshe Koppel; Nathan S. Netanyahu
This paper demonstrates the use of genetic algorithms for evolving: 1) a grandmaster-level evaluation function, and 2) a search mechanism for a chess program, the parameter values of which are initialized randomly. The evaluation function of the program is evolved by learning from databases of (human) grandmaster games. At first, the organisms are evolved to mimic the behavior of human grandmasters, and then these organisms are further improved upon by means of coevolution. The search mechanism is evolved by learning from tactical test suites. Our results show that the evolved program outperforms a two-time world computer chess champion and is at par with the other leading computer chess programs.
genetic and evolutionary computation conference | 2014
Erez Levy; Omid E. David; Nathan S. Netanyahu
In this paper we describe the problem of painter classification, and propose a novel hybrid approach incorporating genetic algorithms (GA) and deep restricted Boltzmann machines (RBM). Given a painting, we extract features using both generic image processing (IP) functions (e.g., fractal dimension, Fourier spectra coefficients, texture coefficients, etc.) and unsupervised deep learning (using deep RBMs). We subsequently compare several supervised learning techniques for classification using the extracted features as input. The results show that the weighted nearest neighbor (WNN) method, for which the weights are evolved using GA, outperforms both a support vector machine (SVM) classifier and a standard nearest neighbor classifier, achieving over 90% classification accuracy for the 3-painter problem (an improvement of over 10% relatively to previous results due to standard feature extraction only).
Genetic Programming and Evolvable Machines | 2016
Dror Sholomon; Omid E. David; Nathan S. Netanyahu
AbstractIn this paper we propose the first effective genetic algorithm (GA)-based jigsaw puzzle solver. We introduce a novel crossover procedure that merges two “parent” solutions to an improved “child” configuration by detecting, extracting, and combining correctly assembled puzzle segments. The solver proposed exhibits state-of-the-art performance, as far as handling previously attempted puzzles more accurately and efficiently, as well puzzle sizes that have not been attempted before. The extended experimental results provided in this paper include, among others, a thorough inspection of up to 30,745-piece puzzles (compared to previous attempts on 22,755-piece puzzles), using a considerably faster concurrent implementation of the algorithm. Furthermore, we explore the impact of different phases of the novel crossover operator by experimenting with several variants of the GA. Finally, we compare different fitness functions and their effect on the overall results of the GA-based solver.
international conference on artificial neural networks | 2016
Omid E. David; Nathan S. Netanyahu
In this paper we describe the problem of painter classification, and propose a novel approach based on deep convolutional autoencoder neural networks. While previous approaches relied on image processing and manual feature extraction from paintings, our approach operates on the raw pixel level, without any preprocessing or manual feature extraction. We first train a deep convolutional autoencoder on a dataset of paintings, and subsequently use it to initialize a supervised convolutional neural network for the classification phase.
computer vision and pattern recognition | 2014
Sarit Chicotay; Omid E. David; Nathan S. Netanyahu
Image registration (IR) is a fundamental task in image processing for matching two or more images of the same scene taken at different times, from different viewpoints and/or by different sensors. Due to the enormous diversity of IR applications, automatic IR remains a challenging problem to this day. A wide range of techniques has been developed for various data types and problems. These techniques might not handle effectively very large images, which give rise usually to more complex transformations, e.g., deformations and various other distortions. In this paper we present a genetic programming (GP)- based approach for IR, which could offer a significant advantage in dealing with very large images, as it does not make any prior assumptions about the transformation model. Thus, by incorporating certain generic building blocks into the proposed GP framework, we hope to realize a large set of specialized transformations that should yield accurate registration of very large images.
genetic and evolutionary computation conference | 2014
Dror Sholomon; Omid E. David; Nathan S. Netanyahu
In this paper we propose the first genetic algorithm (GA)-based solver for jigsaw puzzles of unknown puzzle dimensions and unknown piece location and orientation. Our solver uses a novel crossover technique, and sets a new state-of-the-art in terms of the puzzle sizes solved and the accuracy obtained. The results are significantly improved, even when compared to previous solvers assuming known puzzle dimensions. Moreover, the solver successfully contends with a mixed bag of multiple puzzle pieces, assembling simultaneously all puzzles.
congress on evolutionary computation | 2013
Erez Levy; Omid E. David; Nathan S. Netanyahu
This paper describes the problem of painter classification. We propose solving the problem by using genetic algorithms, which yields very promising results. The proposed methodology combines dimensionality reduction (via image preprocessing) and evolutionary computation techniques, by representing preprocessed data as a chromosome for a genetic algorithm (GA). The preprocessing of our scheme incorporates a diverse set of complex features (e.g., fractal dimension, Fourier spectra coefficients, and texture). The training phase of the GA employs a weighted nearest neighbor (NN) algorithm. We provide initial promising results for the 2- and 3-class cases, which offer significant improvement in comparison to a standard nearest neighbor classifier.
international conference on artificial neural networks | 2016
Dror Sholomon; Omid E. David; Nathan S. Netanyahu
This paper introduces the first deep neural network-based estimation metric for the jigsaw puzzle problem. Given two puzzle piece edges, the neural network predicts whether or not they should be adjacent in the correct assembly of the puzzle, using nothing but the pixels of each piece. The proposed metric exhibits an extremely high precision even though no manual feature extraction is performed. When incorporated into an existing puzzle solver, the solution’s accuracy increases significantly, achieving thereby a new state-of-the-art standard.