Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Omid Veiseh is active.

Publication


Featured researches published by Omid Veiseh.


Advanced Drug Delivery Reviews | 2010

Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging.

Omid Veiseh; Jonathan Gunn; Miqin Zhang

Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents that have been developed for magnetic resonance (MR) imaging. These MNPs have traditionally been used for disease imaging via passive targeting, but recent advances have opened the door to cellular-specific targeting, drug delivery, and multi-modal imaging by these nanoparticles. As more elaborate MNPs are envisioned, adherence to proper design criteria (e.g. size, coating, molecular functionalization) becomes even more essential. This review summarizes the design parameters that affect MNP performance in vivo, including the physicochemical properties and nanoparticle surface modifications, such as MNP coating and targeting ligand functionalizations that can enhance MNP management of biological barriers. A careful review of the chemistries used to modify the surfaces of MNPs is also given, with attention paid to optimizing the activity of bound ligands while maintaining favorable physicochemical properties.


Cancer Research | 2007

Tumor Paint: A Chlorotoxin:Cy5.5 Bioconjugate for Intraoperative Visualization of Cancer Foci

Mandana Veiseh; Patrik Gabikian; S-Bahram Bahrami; Omid Veiseh; Miqin Zhang; Robert C. Hackman; Ali C. Ravanpay; Mark R. Stroud; Yumiko Kusuma; Stacey Hansen; Deborah Kwok; Nina M. Muñoz; Raymond W. Sze; William M. Grady; Norman M. Greenberg; Richard G. Ellenbogen; James M. Olson

Toward the goal of developing an optical imaging contrast agent that will enable surgeons to intraoperatively distinguish cancer foci from adjacent normal tissue, we developed a chlorotoxin:Cy5.5 (CTX:Cy5.5) bioconjugate that emits near-IR fluorescent signal. The probe delineates malignant glioma, medulloblastoma, prostate cancer, intestinal cancer, and sarcoma from adjacent non-neoplastic tissue in mouse models. Metastatic cancer foci as small as a few hundred cells were detected in lymph channels. Specific binding to cancer cells is facilitated by matrix metalloproteinase-2 (MMP-2) as evidenced by reduction of CTX:Cy5.5 binding in vitro and in vivo by a pharmacologic blocker of MMP-2 and induction of CTX:Cy5.5 binding in MCF-7 cells following transfection with a plasmid encoding MMP-2. Mouse studies revealed that CTX:Cy5.5 has favorable biodistribution and toxicity profiles. These studies show that CTX:Cy5.5 has the potential to fundamentally improve intraoperative detection and resection of malignancies.


Cancer Research | 2009

Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier.

Omid Veiseh; Conroy Sun; Chen Fang; Narayan Bhattarai; Jonathan Gunn; Forrest M. Kievit; Kim Du; Barbara Pullar; Donghoon Lee; Richard G. Ellenbogen; James M. Olson; Miqin Zhang

Nanoparticle-based platforms have drawn considerable attention for their potential effect on oncology and other biomedical fields. However, their in vivo application is challenged by insufficient accumulation and retention within tumors due to limited specificity to the target, and an inability to traverse biological barriers. Here, we present a nanoprobe that shows an ability to cross the blood-brain barrier and specifically target brain tumors in a genetically engineered mouse model, as established through in vivo magnetic resonance and biophotonic imaging, and histologic and biodistribution analyses. The nanoprobe is comprised of an iron oxide nanoparticle coated with biocompatible polyethylene glycol-grafted chitosan copolymer, to which a tumor-targeting agent, chlorotoxin, and a near-IR fluorophore are conjugated. The nanoprobe shows an innocuous toxicity profile and sustained retention in tumors. With the versatile affinity of the targeting ligand and the flexible conjugation chemistry for alternative diagnostic and therapeutic agents, this nanoparticle platform can be potentially used for the diagnosis and treatment of a variety of tumor types.


Small | 2008

In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes.

Conroy Sun; Omid Veiseh; Jonathan Gunn; Chen Fang; Stacey Hansen; Donghoon Lee; Raymond W. Sze; Richard G. Ellenbogen; James M. Olson; Miqin Zhang

Converging advances in the development of nanoparticle-based imaging probes and improved understanding of the molecular biology of brain tumors offer the potential to provide physicians with new tools for the diagnosis and treatment of these deadly diseases. However, the effectiveness of promising nanoparticle technologies is currently limited by insufficient accumulation of these contrast agents within tumors. Here a biocompatible nanoprobe composed of a poly(ethylene glycol) (PEG) coated iron oxide nanoparticle that is capable of specifically targeting glioma tumors via the surface-bound targeting peptide, chlorotoxin (CTX), is presented. The preferential accumulation of the nanoprobe within gliomas and subsequent magnetic resonance imaging (MRI) contrast enhancement are demonstrated in vitro in 9L cells and in vivo in tumors of a xenograft mouse model. TEM imaging reveals that the nanoprobes are internalized into the cytoplasm of 9L cells and histological analysis of selected tissues indicates that there are no acute toxic effects of these nanoprobes. High targeting specificity and benign biological response establish this nanoprobe as a potential platform to aid in the diagnosis and treatment of gliomas and other tumors of neuroectodermal origin.


ACS Nano | 2012

Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs.

Forrest M. Kievit; Zachary R. Stephen; Omid Veiseh; Hamed Arami; Tingzhong Wang; Vy P. Lai; James O. Park; Richard G. Ellenbogen; Mary L. Disis; Miqin Zhang

Breast cancer remains one of the most prevalent and lethal malignancies in women. The inability to diagnose small volume metastases early has limited effective treatment of stage 4 breast cancer. Here we report the rational development and use of a multifunctional superparamagnetic iron oxide nanoparticle (SPION) for targeting metastatic breast cancer in a transgenic mouse model and imaging with magnetic resonance (MR). SPIONs coated with a copolymer of chitosan and polyethylene glycol (PEG) were labeled with a fluorescent dye for optical detection and conjugated with a monoclonal antibody against the neu receptor (NP-neu). SPIONs labeled with mouse IgG were used as a nontargeting control (NP-IgG). These SPIONs had desirable physiochemical properties for in vivo applications such as near neutral zeta potential and hydrodynamic size around 40 nm and were highly stable in serum containing medium. Only NP-neu showed high uptake in neu expressing mouse mammary carcinoma (MMC) cells which was reversed by competing free neu antibody, indicating their specificity to the neu antigen. In vivo, NP-neu was able to tag primary breast tumors and significantly, only NP-neu bound to spontaneous liver, lung, and bone marrow metastases in a transgenic mouse model of metastatic breast cancer, highlighting the necessity of targeting for delivery to metastatic disease. The SPIONs provided significant contrast enhancement in MR images of primary breast tumors; thus, they have the potential for MRI detection of micrometastases and provide an excellent platform for further development of an efficient metastatic breast cancer therapy.


Nature Materials | 2015

Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates

Omid Veiseh; Joshua C. Doloff; Minglin Ma; Arturo Vegas; Hok Hei Tam; Andrew Bader; Jie Li; Erin Langan; Jeffrey Wyckoff; Whitney S. Loo; Siddharth Jhunjhunwala; Alan Chiu; Sean Siebert; Katherine Tang; Jennifer Hollister-Lock; Stephanie Aresta-Dasilva; Matthew A. Bochenek; Joshua E. Mendoza-Elias; Yong Wang; Merigeng Qi; Danya M. Lavin; Michael Chen; Nimit Dholakia; Raj Thakrar; Igor Lacík; Gordon C. Weir; Jose Oberholzer; Dale L. Greiner; Robert Langer; Daniel G. Anderson

The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals, and plastics, significantly abrogated foreign body reactions and fibrosis when compared to smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5 mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than 5-fold longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved by simply tuning their spherical dimensions.


ACS Nano | 2010

PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo.

Conroy Sun; Kim Du; Chen Fang; Narayan Bhattarai; Omid Veiseh; Forrest M. Kievit; Zachary R. Stephen; Donghoon Lee; Richard G. Ellenbogen; Buddy D. Ratner; Miqin Zhang

Multifunctional superparamagnetic nanoparticles have been developed for a wide range of applications in nanomedicine, such as serving as tumor-targeted drug carriers and molecular imaging agents. To function in vivo, the development of these novel materials must overcome several challenging requirements including biocompatibility, stability in physiological solutions, nontoxicity, and the ability to traverse biological barriers. Here we report a PEG-mediated synthesis process to produce well-dispersed, ultrafine, and highly stable iron oxide nanoparticles for in vivo applications. Utilizing a biocompatible PEG coating bearing amine functional groups, the produced nanoparticles serve as an effective platform with the ability to incorporate a variety of targeting, therapeutic, or imaging ligands. In this study, we demonstrated tumor-specific accumulation of these nanoparticles through both magnetic resonance and optical imaging after conjugation with chlorotoxin, a peptide with high affinity toward tumors of the neuroectodermal origin, and Cy5.5, a near-infrared fluorescent dye. Furthermore, we performed preliminary biodistribution and toxicity assessments of these nanoparticles in wild-type mice through histological analysis of clearance organs and hematology assay, and the results demonstrated the relative biocompatibility of these nanoparticles.


Nature Medicine | 2016

Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice

Arturo Vegas; Omid Veiseh; Mads Gürtler; Jeffrey R. Millman; Felicia W. Pagliuca; Andrew Bader; Joshua C. Doloff; Jie Li; Michael Chen; Karsten Olejnik; Hok Hei Tam; Siddharth Jhunjhunwala; Erin Langan; Stephanie Aresta-Dasilva; Srujan Gandham; James J. McGarrigle; Matthew A. Bochenek; Jennifer Hollister-Lock; Jose Oberholzer; Dale L. Greiner; Gordon C. Weir; Douglas A. Melton; Robert Langer; Daniel G. Anderson

The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically, but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-β cells), which may represent an unlimited source of human cells for pancreas replacement therapy. Strategies to address the immunosuppression concerns include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier. However, clinical implementation has been challenging because of host immune responses to the implant materials. Here we report the first long-term glycemic correction of a diabetic, immunocompetent animal model using human SC-β cells. SC-β cells were encapsulated with alginate derivatives capable of mitigating foreign-body responses in vivo and implanted into the intraperitoneal space of C57BL/6J mice treated with streptozotocin, which is an animal model for chemically induced type 1 diabetes. These implants induced glycemic correction without any immunosuppression until their removal at 174 d after implantation. Human C-peptide concentrations and in vivo glucose responsiveness demonstrated therapeutically relevant glycemic control. Implants retrieved after 174 d contained viable insulin-producing cells.


ACS Nano | 2010

Chlorotoxin Labeled Magnetic Nanovectors for Targeted Gene Delivery to Glioma

Forrest M. Kievit; Omid Veiseh; Chen Fang; Narayan Bhattarai; Donghoon Lee; Richard G. Ellenbogen; Miqin Zhang

Glioma accounts for 80% of brain tumors and currently remains one of the most lethal forms of cancers. Gene therapy could potentially improve the dismal prognosis of patients with glioma, but this treatment modality has not yet reached the bedside from the laboratory due to the lack of safe and effective gene delivery vehicles. In this study we investigate targeted gene delivery to C6 glioma cells in a xenograft mouse model using chlorotoxin (CTX) labeled nanoparticles. The developed nanovector consists of an iron oxide nanoparticle core, coated with a copolymer of chitosan, polyethylene glycol (PEG), and polyethylenimine (PEI). Green fluorescent protein (GFP) encoding DNA was bound to these nanoparticles, and CTX was then attached using a short PEG linker. Nanoparticles without CTX were also prepared as a control. Mice bearing C6 xenograft tumors were injected intravenously with the DNA-bound nanoparticles. Nanoparticle accumulation in the tumor site was monitored using magnetic resonance imaging and analyzed by histology, and GFP gene expression was monitored through Xenogen IVIS fluorescence imaging and confocal fluorescence microscopy. Interestingly, the CTX did not affect the accumulation of nanoparticles at the tumor site but specifically enhanced their uptake into cancer cells as evidenced by higher gene expression. These results indicate that this targeted gene delivery system may potentially improve treatment outcome of gene therapy for glioma and other deadly cancers.


Nature Communications | 2014

Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity

Kathryn A. Whitehead; J. Robert Dorkin; Arturo Vegas; Philip H. Chang; Omid Veiseh; Jonathan C. F. Matthews; Owen S. Fenton; Yunlong Zhang; Karsten Olejnik; Volkan Yesilyurt; Delai Chen; Scott Barros; Boris Klebanov; Tatiana Novobrantseva; Robert Langer; Daniel G. Anderson

One of the most significant challenges in the development of clinically-viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. To this end, we synthesized 1400 degradable lipidoids and evaluated their transfection ability and structure function activity. Here we show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations upon IV administration to mice (siRNA EC50 values as low as 0.01 mg/kg). Surprisingly, we identify four necessary and sufficient structural and pKa criteria that robustly predict the ability of nanoparticles to mediate greater than 95% protein silencing in vivo. Because these efficacy criteria can be dictated through chemical design, this discovery could eliminate our dependence on time-consuming and expensive cell culture assays and animal testing. Herein, we identify promising degradable lipidoids and describe new design criteria that reliably predict in vivo siRNA delivery efficacy without any prior biological testing.

Collaboration


Dive into the Omid Veiseh's collaboration.

Top Co-Authors

Avatar

Miqin Zhang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Daniel G. Anderson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert Langer

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Fang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Arturo Vegas

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joshua C. Doloff

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jonathan Gunn

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Andrew Bader

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge