Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Omprakash Mittapalli is active.

Publication


Featured researches published by Omprakash Mittapalli.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Antioxidant defense response in a galling insect

Omprakash Mittapalli; Jonathan J. Neal; Richard H. Shukle

Herbivorous insect species are constantly challenged with reactive oxygen species (ROS) generated from endogenous and exogenous sources. ROS produced within insects because of stress and prooxidant allelochemicals produced by host plants in response to herbivory require a complex mode of antioxidant defense during insect/plant interactions. Some insect herbivores have a midgut-based defense against the suite of ROS encountered. Because the Hessian fly (Mayetiola destructor) is the major insect pest of wheat worldwide, and an emerging model for all gall midges, we investigated its antioxidant responses during interaction with its host plant. Quantitative data for two phospholipid glutathione peroxidases (MdesPHGPX-1 and MdesPHGPX-2), two catalases (MdesCAT-1 and MdesCAT-2), and two superoxide dismutases (MdesSOD-1 and MdesSOD-2) revealed high levels of all of the mRNAs in the midgut of larvae on susceptible wheat (compatible interaction). During development of the Hessian fly on susceptible wheat, a differential expression pattern was observed for all six genes. Analysis of larvae on resistant wheat (incompatible interaction) compared with larvae on susceptible wheat showed increased levels of mRNAs in larvae on resistant wheat for all of the antioxidant genes except MdesSOD-1 and MdesSOD-2. We postulate that the increased mRNA levels of MdesPHGPX-1, MdesPHGPX-2, MdesCAT-1, and MdesCAT-2 reflect responses to ROS encountered by larvae while feeding on resistant wheat seedlings and/or ROS generated endogenously in larvae because of stress/starvation. These results provide an opportunity to understand the cooperative antioxidant defense responses in the Hessian fly/wheat interaction and may be applicable to other insect/plant interactions.


PLOS ONE | 2010

Combining Next-Generation Sequencing Strategies for Rapid Molecular Resource Development from an Invasive Aphid Species, Aphis glycines

Xiaodong Bai; Wei Zhang; Lucia Orantes; Tae Hwan Jun; Omprakash Mittapalli; M. A. Rouf Mian; Andrew P. Michel

Background Aphids are one of the most important insect taxa in terms of ecology, evolutionary biology, genetics and genomics, and interactions with endosymbionts. Additionally, many aphids are serious pest species of agricultural and horticultural plants. Recent genetic and genomic research has expanded molecular resources for many aphid species, including the whole genome sequencing of the pea aphid, Acrythosiphon pisum. However, the invasive soybean aphid, Aphis glycines, lacks in any significant molecular resources. Methodology/Principal Findings Two next-generation sequencing technologies (Roche-454 and Illumina GA-II) were used in a combined approach to develop both transcriptomic and genomic resources, including expressed genes and molecular markers. Over 278 million bp were sequenced among the two methods, resulting in 19,293 transcripts and 56,688 genomic sequences. From this data set, 635 SNPs and 1,382 microsatellite markers were identified. For each sequencing method, different soybean aphid biotypes were used which revealed potential biotype specific markers. In addition, we uncovered 39,822 bp of sequence that were related to the obligatory endosymbiont, Buchnera aphidicola, as well as sequences that suggest the presence of Hamiltonella defensa, a facultative endosymbiont. Conclusions and Significance Molecular resources for an invasive, non-model aphid species were generated. Additionally, the power of next-generation sequencing to uncover endosymbionts was demonstrated. The resources presented here will complement ongoing molecular studies within the Aphididae, including the pea aphid whole genome, lead to better understanding of aphid adaptation and evolution, and help provide novel targets for soybean aphid control.


BMC Genomics | 2014

RNA-Seq reveals a xenobiotic stress response in the soybean aphid, Aphis glycines, when fed aphid-resistant soybean

Raman Bansal; Mar Mian; Omprakash Mittapalli; Andy P. Michel

BackgroundWhile much recent research has expanded our understanding of the molecular interactions between aphids and their host plants, it is lacking for the soybean aphid, Aphis glycines. Since its North American invasion, A. glycines has become one of the most damaging insect pests on this important crop. Five soybean genes for host plant resistance to A. glycines have been identified, but populations of A. glycines have already adapted to overcome these resistance genes. Understanding the molecular interactions between resistant soybean and A. glycines can provide clues to its adaptation mechanisms. Here, we used RNA-Sequencing to compare and contrast A. glycines gene expression when fed resistant (Rag1) and susceptible soybean.ResultsCombining results from a previous A. glycines transcriptome, we generated 64,860 high quality transcripts, totaling 41,151,086 bases. Statistical analysis revealed 914 genes with significant differential expression. Most genes with higher expression in A. glycines on resistant plants (N = 352) were related to stress and detoxification such as cytochrome P450s, glutathione-S-transferases, carboxyesterases, and ABC transporters. A total of 562 genes showed lower transcript abundance in A. glycines on resistant plants. From our extensive transcriptome data, we also identified genes encoding for putative salivary effector proteins (N = 73). Among these, 6 effector genes have lower transcript abundance in A. glycines feeding on resistant soybean.ConclusionsOverall, A. glycines exhibited a pattern typical of xenobiotic challenge, thereby validating antibiosis in Rag1, presumably mediated through toxic secondary metabolites. Additionally, this study identified many A. glycines genes and gene families at the forefront of its molecular interaction with soybean. Further investigation of these genes in other biotypes may reveal adaptation mechanisms to resistant plants.


Journal of Economic Entomology | 2012

Validation of Reference Genes for Gene Expression Studies in Aphis glycines (Hemiptera: Aphididae)

Raman Bansal; Praveen Mamidala; M. A. Rouf Mian; Omprakash Mittapalli; Andy P. Michel

ABSTRACT Quantitative real-time polymerase chain reaction (qRT-PCR) is a common and robust tool for accurate quantification of mRNA transcripts. To normalize results, a housekeeping gene ([HKG], reference gene or endogenous control gene) is mandatory. Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a significant soybean, Glycine max (L.) Merr., pest, yet gene expression and functional genomics studies are hindered by a lack of stable HKGs. We evaluated seven potential HKGs (SDFS, succinate dehydrogenase flavoprotein subunit; EF1a, elongation factor-1&agr;; HEL, helicase; GAPDH, glyceraldehyde-3 phosphate dehydrogenase; RPS9, ribosomal protein S9; TBP, TATA-box binding protein; and UBQ, ubiquitin-conjugating protein) to determine the most efficient HKGs that have stable expression among tissues, developmental stages, and aphids fed on susceptible and host plant—resistant soybean. HKG stability was determined using GeNorm and NormFinder. Results from three different experimental conditions revealed high stability of TBP compared with the other HKGs profiled across the samples assayed. RPS9 showed stable expression among aphids on susceptible and resistant plants, whereas EF1a showed stable expression in tissues and developmental stages. Therefore, we recommend the TBP as a suitable HKG for efficient normalization among treatments, tissues, and developmental stages of A. glycines. In addition, RPS9 may be used for host-plant resistance experiments and EF1a could be considered for testing differential expression across tissues or developmental stages. These results will enable a more accurate and reliable normalization of qRT-PCR data in A. glycines.


Journal of Insect Physiology | 2012

Transcriptome analysis of the salivary glands of potato leafhopper, Empoasca fabae

Bridget D. DeLay; Praveen Mamidala; Asela Wijeratne; Saranga Wijeratne; Omprakash Mittapalli; Jian Wang; William O. Lamp

The potato leafhopper, Empoasca fabae, is a pest of economic crops in the United States and Canada, where it causes damage known as hopperburn. Saliva, along with mechanical injury, leads to decreases in gas exchange rates, stunting and chlorosis. Although E. fabae saliva is known to induce plant responses, little knowledge exists of saliva composition at the molecular level. We subjected the salivary glands of E. fabae to Roche 454-pyrosequencing which resulted significant number (30,893) of expressed sequence tags including 2805 contigs and 28,088 singletons. A high number of sequences (78%) showed similarity to other insect species in GenBank, including Triboliumcastaneum, Drosophilamelanogaster and Acrythosiphonpisum. KEGG analysis predicted the presence of pathways for purine and thiamine metabolic, biosynthesis of secondary metabolites, drug metabolism, and lysine degradation. Pfam analysis showed a high number of cellulase and carboxylesterase protein domains. Expression analysis of candidate genes (alpha amylase, lipase, pectin lyase, etc.) among different tissues revealed tissue-specific expression of digestive enzymes in E. fabae. This is the first study to characterize the sialotranscriptome of E. fabae and the first for any species in the family of Cicadellidae. Due to the status of these insects as economic pests, knowledge of which genes are active in the salivary glands is important for understanding their impact on host plants.


Archive | 2011

Evolution of Soybean Aphid Biotypes: Understanding and Managing Virulence to Host-Plant Resistance

Andrew P. Michel; Omprakash Mittapalli; M. A. Rouf Mian

The soybean aphid (Aphis glycines Matsumura) has rapidly become one of the most significant insect pests of soybean (Glycine max) worldwide (Ragsdale et al., 2007). The rise of soybean aphid in importance is in large part due to the invasion of North America ca. 2000, presumably coming from its native range in Asia (Ragsdale et al., 2004). In the first few years of the North American invasion, the soybean aphid spread across much of the NorthCentral US and the provinces of Ontario and Quebec. Its current distribution includes over 80% of the soybean growing region of the US and Canada (Vennette & Ragsdale, 2004). Worldwide, the distribution includes much of East Asia (China, Japan, The Philippines, South Korea, Indonesia, Malaysia, Thailand, Vietnam, and Russia), all of which likely represents the ancestral range (Footit et al., 2006). Options for management and control of soybean aphid are limited. As an alternative to chemical insecticides, host-plant resistance is a common method of aphid control (Van Emden, 2007), which uses plant hosts with genetically inherited traits that enable the plant to withstand pest attack better than a plant lacking these traits (Smith, 2005). Although soybean aphid resistant varieties have been studied in China (Wu et al., 2004), new soybean varieties have been developed with resistance to the soybean aphid specifically for use in North America (Hill et al., 2004, 2006a,b; Mian et al., 2008; Zhang et al., 2009; Hill et al., 2010). Varieties for North American commercial use were available for the first time in 2010. However, the host-plant resistance strategy is complicated because of rapid evolution of soybean aphid populations (i.e. biotypes) that have overcome host-plant resistance (i.e. virulence). Biotypes can be defined as “populations within an arthropod species that differ in their ability to utilize a particular trait in a particular plant genotype” (Smith, 2005). The presence of soybean aphid biotypes with virulence to host-plant resistance varieties before these varieties were commercially released suggests that the soybean aphid can rapidly adapt to these new lines and thereby threaten the effectiveness and sustainability of the host-plant resistance strategy.


Journal of Insect Physiology | 2010

The gut transcriptome of a gall midge, Mayetiola destructor.

Shize Zhang; Richard H. Shukle; Omprakash Mittapalli; Yu Cheng Zhu; John C. Reese; Haiyan Wang; Bao-Zhen Hua; Ming-Shun Chen

The Hessian fly, Mayetiola destructor, is a serious pest of wheat and an experimental organism for the study of gall midge-plant interactions. In addition to food digestion and detoxification, the gut of Hessian fly larvae is also an important interface for insect-host interactions. Analysis of the genes expressed in the Hessian fly larval gut will enhance our understanding of the overall gut physiology and may also lead to the identification of critical molecules for Hessian fly-host plant interactions. Over 10,000 Expressed Sequence Tags (ESTs) were generated and assembled into 2007 clusters. The most striking feature of the Hessian fly larval transcriptome is the existence of a large number of transcripts coding for so-called small secretory proteins (SSP) with amino acids less than 250. Eleven of the 30 largest clusters were SSP transcripts with the largest cluster containing 11.3% of total ESTs. Transcripts coding for diverse digestive enzymes and detoxification proteins were also identified. Putative digestive enzymes included trypsins, chymotrypsins, cysteine proteases, aspartic protease, endo-oligopeptidase, aminopeptidases, carboxypeptidases, and alpha-amylases. Putative detoxification proteins included cytochrome P450s, glutathione S-transferases, peroxidases, ferritins, a catalase, peroxiredoxins, and others. This study represents the first global analysis of gut transcripts from a gall midge. The identification of a large number of transcripts coding for SSPs, digestive enzymes, detoxification proteins in the Hessian fly larval gut provides a foundation for future studies on the functions of these genes.


Journal of Insect Physiology | 2009

Characterization and expression analysis of a gene encoding a secreted lipase-like protein expressed in the salivary glands of the larval Hessian fly, Mayetiola destructor (Say)

Richard H. Shukle; Omprakash Mittapalli; Philip K. Morton; Ming-Shun Chen

In a salivary gland transcriptomics study we identified a cDNA with a full-length open reading frame for a gene (MdesL1) encoding a lipase-like protein expressed in the salivary glands of the larval Hessian fly, Mayetiola destructor (Say). Fluorescent in situ hybridization on salivary polytenes positioned MdesL1 on the long arm of Autosome 1. BLASTp and conserved domain searches revealed the deduced amino acid sequence contained a lipase superfamily domain with similarity to lipases and phospholipases from other insects. A secretion signal peptide was identified at the amino terminus of the deduced amino acid sequence. Analysis of the transcript of MdesL1 in larval Hessian fly tissues by quantitative real-time PCR (qPCR) revealed the greatest abundance was in salivary glands. Analysis of transcript levels during development showed the greatest level was detected in feeding 1st-instar and early 2nd-instar larvae. Transcript levels increased dramatically over time in larvae feeding on susceptible wheat but were detected at low levels in larvae feeding on resistant wheat. These data suggest the protein encoded by MdesL1 is likely secreted into host-plant cells during larval feeding and could be involved in extra-oral digestion and changes in host-cell permeability or in generating a second messenger in a host-cell-signaling cascade.


Pest Management Science | 2015

Evidence for trade‐offs in detoxification and chemosensation gene signatures in Plutella xylostella

Ma Anita M Bautista; Binny Bhandary; Asela Wijeratne; Andrew P. Michel; Casey W. Hoy; Omprakash Mittapalli

BACKGROUND Detoxification genes have been associated with insecticide adaptation in the diamondback moth, Plutella xylostella. The link between chemosensation genes and adaptation, however, remains unexplored. To gain a better understanding of the involvement of these genes in insecticide adaptation, the authors exposed lines of P. xylostella to either high uniform (HU) or low heterogeneous (LH) concentrations of permethrin, expecting primarily physiological or behavioral selection respectively. Initially, 454 pyrosequencing was applied, followed by an examination of expression profiles of candidate genes that responded to selection [cytochrome P450 (CYP), glutathione S-transferase (GST), carboxylesterase (CarE), chemosensory protein (CSP) and odorant-binding protein (OBP)] by quantitative PCR in the larvae. Toxicity and behavioral assays were also conducted to document the effects of the two forms of exposure. RESULTS Pyrosequencing of the P. xylostella transcriptome from adult heads and third instars produced 198,753 reads with 52,752,486 bases. Quantitative PCR revealed overexpression of CYP4M14, CYP305B1 and CSP8 in HU larvae. OBP13, however, was highest in LH. Larvae from LH and HU lines had up to five- and 752-fold resistance levels respectively, which could be due to overexpression of P450s. However, the behavioral responses of all lines to a series of permethrin concentrations did not vary significantly in any of the generations examined, in spite of the observed upregulation of CSP8 and OBP13. CONCLUSION Expression patterns from the target genes provide insights into behavioral and physiological responses to permethrin and suggest a new avenue of research on the role of chemosensation genes in insect adaptation to toxins.


Insect Molecular Biology | 2014

Characterization of horizontally transferred β-fructofuranosidase (ScrB) genes in Agrilus planipennis

C. Zhao; Daniel Doucet; Omprakash Mittapalli

The emerald ash borer (Agrilus planipennis) is an important invasive insect pest of Fraxinus spp. that feeds on host tissues containing high levels of sucrose. However, little is known about how it digests sucrose. Here, using larval midgut transcriptome data and preliminary genome sequence efforts, two β‐fructofuranosidase‐encoding ScrB genes, AplaScrB‐1 and AplaScrB‐2, were identified, and proved to reside within the A. planipennis genome. Homology and phylogenetic analysis revealed that they were acquired by A. planipennis via horizontal gene transfer (HGT) from bacteria, possibly an event independent from that reported in bark beetles (eg ScrB genes). Microsynteny between A. planipennis DNA scaffold #2042940, which hosts AplaScrB‐1, and a region in the Tribolium castaneum chromosome LG4 suggested that A. planipennis gained this gene after the separation of Buprestidae and Tenebrionidae. Although both of the putative AplaScrB proteins have conserved β‐fructofuranosidase motifs, only AplaScrB‐2 was predicted to be a secretory protein. Expression of AplaScrB‐1 seemed constitutive during development and in all tissues examined, whereas AplaScrB‐2 showed a peak expression in adults and in the midgut. We propose that acquisition of these genes by A. planipennis from bacteria is adaptive, and specifically AplaScrB‐2 is involved in breaking down dietary sucrose to obtain energy for development.

Collaboration


Dive into the Omprakash Mittapalli's collaboration.

Top Co-Authors

Avatar

Andy P. Michel

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

M. A. Rouf Mian

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Richard H. Shukle

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Michel

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Raman Bansal

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Asela Wijeratne

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Casey W. Hoy

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Praveen Mamidala

Ohio Agricultural Research and Development Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge