Omprakash Sarkar
Indian Institute of Chemical Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Omprakash Sarkar.
Bioresource Technology | 2016
S. Venkata Mohan; G.N. Nikhil; P. Chiranjeevi; C. Nagendranatha Reddy; M.V. Rohit; A. Naresh Kumar; Omprakash Sarkar
Increased urbanization worldwide has resulted in a substantial increase in energy and material consumption as well as anthropogenic waste generation. The main source for our current needs is petroleum refinery, which have grave impact over energy-environment nexus. Therefore, production of bioenergy and biomaterials have significant potential to contribute and need to meet the ever increasing demand. In this perspective, a biorefinery concept visualizes negative-valued waste as a potential renewable feedstock. This review illustrates different bioprocess based technological models that will pave sustainable avenues for the development of biobased society. The proposed models hypothesize closed loop approach wherein waste is valorised through a cascade of various biotechnological processes addressing circular economy. Biorefinery offers a sustainable green option to utilize waste and to produce a gamut of marketable bioproducts and bioenergy on par to petro-chemical refinery.
Bioresource Technology | 2015
Shikha Dahiya; Omprakash Sarkar; Y.V. Swamy; S. Venkata Mohan
Fermentation experiments were designed to elucidate the functional role of the redox microenvironment on volatile fatty acid (VFA, short chain carboxylic acid) production and co-generation of biohydrogen (H2). Higher VFA productivity was observed at pH 10 operation (6.3g/l) followed by pH 9, pH 6, pH 5, pH 7, pH 8 and pH 11 (3.5 g/l). High degree of acidification, good system buffering capacity along with co-generation of higher H2 production from food waste was also noticed at alkaline condition. Experiments illustrated the role of initial pH on carboxylic acids synthesis. Alkaline redox conditions assist solubilization of carbohydrates, protein and fats and also suppress the growth of methanogens. Among the carboxylic acids, acetate fraction was higher at alkaline condition than corresponding neutral or acidic operations. Integrated process of VFA production from waste with co-generation of H2 can be considered as a green and sustainable platform for value-addition.
RSC Advances | 2016
Omprakash Sarkar; A. Naresh Kumar; Shikha Dahiya; K. Vamshi Krishna; Dileep Kumar Yeruva; S. Venkata Mohan
Short chain carboxylic (volatile fatty) acid (VFA) production in mixed microbiomes is majorly limited by the prevalence of methanogenic bacteria and the availability of substrate from waste to the biocatalyst during the fermentation process. To enhance the VFA production from food waste, the present study evaluates a strategy for selective enrichment of the biocatalyst by exposing it to acid-shock, followed by operation under alkaline conditions (pH 10). A comprehensive system based analysis was carried out during the bio-based platform chemical synthesis from waste, in conjugation with microbial profiling and bio-electrochemical analysis. After the selective enrichment of the biocatalyst, enhanced VFA synthesis was conducted with pretreated biocatalyst (PT; 11.1 g L−1) and compared with untreated parent biocatalyst (UT; 6.1 g L−1). In both systems biohydrogen was the co-product. Variations in the VFA profiles were documented with respect to the biocatalyst used, which influenced the degree of acidification (DOA – PT: 37% and UT: 11%). A high fraction of acetic acid (6.9 g L−1) was observed, followed by butyric acid (2.6 g L−1) and propionic acid (1.3 g L−1) in PT operation, contrary to the control system (acetic acid, 3.9 g L−1, butyric acid, 1.6 g L−1; propionic acid, 0.9 g L−1). Specifically, the PT system showed the biosynthesis of iso-valeric acid: 0.15 g L−1 (C5) and caproic acid: 1.9 g L−1 (C6), which indicates the possibility for chain-elongation through the selective enrichment of the microbial community. The PT system showed Epeak at −0.415 V on the cyclic voltammogram, which corresponds to the involvement of the redox couple, H+/H2, correlating with the enhanced acidogenic process, unlike UT. Tailoring of the parent inoculum (pretreatment) resulted in the enrichment and enhancement of the capabilities of the biocatalyst in secreting the redox mediators, which were not detected in the UT system. Acidogenic firmicutes (spore formers) and fatty acid producing bacteroides were enriched in the PT system along with saccharolytic and proteolytic bacteria (Bacillus cellulosilyticus (alkalophile), Soehngenia saccharolytica, etc.). The presence of Clostridium autoethanogenum and Propionibacterium freudenreichii in the PT system supports effective utilization of complex carbohydrates, facilitating acidification.
Bioresource Technology | 2015
Omprakash Sarkar; Manu Agarwal; A. Naresh Kumar; S. Venkata Mohan
Algal biomass grown hetrotrophically in domestic wastewater was evaluated as pyrolytic feedstock for harnessing biogas, bio-oil and bio-char. Freshly harvested microalgae (MA) and lipid extracted microalgae (LEMA) were pyrolysed in packed bed reactor in the presence and absence of sand as additive. MA (without sand additive) depicted higher biogas (420 ml/g; 800 °C; 3 h) and bio-oil (0.70 ml/g; 500 °C; 3 h). Sand addition enhanced biogas production (210 ml/g; 600 °C; 2 h) in LEMA operation. The composition of bio-gas and bio-oil was found to depend on the nature of feedstock as well as the process conditions viz., pyrolytic-temperature, retention time and presence of additive. Sand additive improved the H2 composition while pyrolytic temperature increment caused a decline in CO2 fraction. Bio-char productivity increased with increasing temperature specifically with LEMA. Integration of thermo-chemical process with microalgae cultivation showed to yield multiple resources and accounts for environmental sustainability in the bio-refinery framework.
Bioresource Technology | 2014
R. Kannaiah Goud; Omprakash Sarkar; P. Chiranjeevi; S. Venkata Mohan
The efficiency of bioaugmentation strategy for enhancing biohydrogenesis at elevated organic load was successfully evaluated by augmenting native acidogenic microflora with three acidogenic bacterial isolates viz., Bacillus subtilis, Pseudomonas stutzeri and Lysinibacillus fusiformis related to phyla Firmicutes and Proteobacteria separately. Hydrogen production ceased at 50g COD/l operation due to feed-back inhibition. B. subtilis augmented system showed higher H2 production followed by L. fusiformis, P. stutzeri and control operations, indicating the efficacy of Firmicutes as bioaugmentation biocatalyst. Higher VFA production with acetic acid as a major fraction was specifically observed with B. subtilis augmented system. Shift in metabolic pathway towards acidogenesis favoured higher H2 production. FISH analysis confirmed survivability and persistence of augmented strains apart from improvement in process performance. Bio-electrochemical analysis depicted specific changes in the metabolic activity after augmentation which also facilitated enhanced electron transfer. P. stutzeri augmented system documented relatively higher COD removal.
Bioresource Technology | 2014
K. Vamshi Krishna; Omprakash Sarkar; S. Venkata Mohan
The efficiency of a bioelectrochemical treatment system (BET) to treat complex paper and pulp wastewater at two different pH conditions (6 and 7) in comparison with conventional anaerobic treatment process (AnT) was evaluated. Among the operating conditions, BET showed good treatment efficiency at pH 7 in terms of COD (BET/AnT: 55%/51%), nitrates (33.5%/19.1%), phosphates (33%/19%) and sulfates (58%/41%) in removal. The effluent obtained from BET system was subjected to coagulation for further treatment which showed good COD removal (BET/AnT, 95%/69%) and color (100%/68%). Bioelectrochemical analysis revealed higher catalytic currents in BET than AnT specific to oxidation and reduction. Besides, derivative of cyclic voltammetric scans (DCV) also supported the involvement of various membrane bound electron transferring complexes like FAD(H) bound enzymes, ubiquinone, NADH(+)/H(+) bound enzymes, etc. Experimental results demonstrated that BET system can be a viable platform to treat complex wastewaters with simultaneous energy recovery in integrated approach.
Green Chemistry | 2015
Lalitha Devi Gottumukkala; Rajeev K. Sukumaran; S. Venkata Mohan; Sajna Kuttuvan Valappil; Omprakash Sarkar; Ashok Pandey
Clostridium sporogenes BE01, a non-acetone forming butanol producer, can produce hydrogen and volatile fatty acids (VFAs) during butanol fermentation from rice straw hydrolysate. Bio-electrochemical analysis revealed the changes that occurred in the redox microenvironment and electron transport mediators during fermentation at different pH and CaCO3 concentrations. CaCO3 played a very important role in enhancing the production of hydrogen, volatile fatty acids and solvents by stimulating the changes in the electron transport system. The electron transport system mediated by NAD/NADH, flavins, Fe–S clusters, protein bound FAD, and cytochrome complex in C. sporogenes BE01 was analysed by cyclic voltammetry (CV). Electrokinetic analysis revealed that the favorability for redox reactions increased with an increase in pH, and the polarization resistance reduced significantly with CaCO3 supplementation.
Bioresource Technology | 2018
Shikha Dahiya; A. Naresh Kumar; J. Shanthi Sravan; S. Chatterjee; Omprakash Sarkar; S. Venkata Mohan
Enormous quantity of food waste (FW) is becoming a global concern. To address this persistent problem, sustainable interventions with green technologies are essential. FW can be used as potential feedstock in biological processes for the generation of various biobased products along with its remediation. Enabling bioprocesses like acidogenesis, fermentation, methanogenesis, solventogenesis, photosynthesis, oleaginous process, bio-electrogenesis, etc., that yields various products like biofuels, platform chemicals, bioelectricity, biomaterial, biofertilizers, animal feed, etc can be utilized for FW valorisation. Integrating these bioprocesses further enhances the process efficiency and resource recovery sustainably. Adapting biorefinery strategy with integrated approach can lead to the development of circular bioeconomy. The present review highlights the various enabling bioprocesses that can be employed for the generation of energy and various commodity chemicals in an integrated approach addressing sustainability. The waste biorefinery approach for FW needs optimization of the cascade of the individual bioprocesses for the transformation of linear economy to circular bioeconomy.
Bioresource Technology | 2013
Omprakash Sarkar; R. Kannaiah Goud; G. Venkata Subhash; S. Venkata Mohan
The effect of different inorganic acids viz., HNO3, HCl, H2SO4 and H3PO4 on inoculum pretreatment to selectively enrich hydrogen (H2) producing acidogenic bacteria was evaluated in anaerobic sequencing batch bioreactors. Relative positive efficiency of HNO3 pretreated consortia in enhancing H2 production (11.85 mol H2/kg CODR) was noticed compared to other acids (HCl, 5.64 mol H2/kg CODR; H2SO4, 7.65 mol H2/kg CODR; H3PO4, 6.90 mol H2/kg CODR) and untreated-parent consortia (control, 6.80 mol H2/kg CODR). On the contrary, substrate degradation (COD removal) was higher with the control operation (ξCOD, 66.3%; substrate degradation rate (SDR), 1.42 kg CODR/m(3)-day) compared to pre-treated culture. HNO3 pre-treatment resulted in a shift in the fermentation pathway towards more acetic acid production, while other acid pretreatment and untreated culture showed mixed type fermentation (acetic, butyric, propionic acids). The bio-electrochemical analysis and dehydrogenase activity supported the biocatalyst performance after HNO3 pretreatment with specific enrichment of Firmicutes and Bacillus.
Bioresource Technology | 2017
Omprakash Sarkar; S. Venkata Mohan
Application of pre-aeration (AS) to waste prior to feeding was evaluated on acidogenic process in a semi-pilot scale biosystem for the production of biobased products (biohydrogen, volatile fatty acids (VFA) and biohythane) from food waste. Oxygen assisted in pre-hydrolysis of waste along with the suppression of methanogenic activity resulting in enhanced acidogenic product formation. AS operation resulted in 97% improvement in hydrogen conversion efficiency (HCE) and 10% more VFA production than the control. Increasing the organic load (OL) of food waste in association with AS application improved the productivity. The application of AS also influenced concentration and composition of fatty acid. Highest fraction of acetic (5.3g/l), butyric (0.7g/l) and propionic acid (0.84g/l) was achieved at higher OL (100g COD/l) with good degree of acidification (DOA). AS strategy showed positive influence on biofuel (biohydrogen and biohythane) production along with the biosynthesis of short chain fatty acids functioning as a low-cost pretreatment strategy in a single stage bioprocess.