Onder Alpdogan
Thomas Jefferson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Onder Alpdogan.
Journal of Cell Science | 2005
Murat T. Budak; Onder Alpdogan; Mingyuan Zhou; Robert M. Lavker; M.A. Murat Akinci; J. Mario Wolosin
When cell populations are incubated with the DNA-binding dye Hoechst 33342 and subjected to flow cytometry analysis for Hoechst 33342 emissions, active efflux of the dye by the ABCG2/BCRP1 transporter causes certain cells to appear as a segregated cohort, known as a side population (SP). Stem cells from several tissues have been shown to possess the SP phenotype. As the lack of specific surface markers has hindered the isolation and subsequent biochemical characterization of epithelial stem cells this study sought to determine the existence of SP cells and expression of ABCG2 in the epithelia of the ocular surface and evaluate whether such SP cells had features associated with epithelial stem cells. Human and rabbit limbal-corneal and conjunctival epithelial cells were incubated with Hoechst 33342, and analyzed and sorted by flow cytometry. Sorted cells were subjected to several tests to determine whether the isolated SP cells displayed features consistent with the stem cell phenotype. Side populations amounting to <1% of total cells, which were sensitive to the ABCG2-inhibitor fumitremorgin C, were found in the conjunctival and limbal epithelia, but were absent from the stem cell-free corneal epithelium. Immunohistochemistry was used to establish the spatial expression pattern of ABCG2. The antigen was detected in clusters of conjunctival and limbal epithelia basal cells but was not present in the corneal epithelium. SP cells were characterized by extremely low light side scattering and contained a high percentage of cells that: showed slow cycling prior to tissue collection; exhibited an initial delay in proliferation after culturing; and displayed clonogenic capacity and resistance to phorbol-induced differentiation; all features that are consistent with a stem cell phenotype.
Journal of Clinical Investigation | 2003
Onder Alpdogan; Stephanie J. Muriglan; Jeffrey M. Eng; Lucy M. Willis; Andrew S. Greenberg; Barry J. Kappel; Marcel R.M. van den Brink
We used clinically relevant murine allogeneic bone marrow transplantation (BMT) models to study the mechanisms by which IL-7 administration can improve posttransplant peripheral T cell reconstitution. After transplant we could distinguish two populations of mature donor T cells: (a) alloreactive T cells with decreased expression of CD127 (IL-7 receptor alpha chain) and (b) nonalloreactive T cells, which express CD127 and undergo homeostatic proliferation. IL-7 administration increased the homeostatic proliferation of nonalloreactive T cells, but had no effect on alloreactive T cells and the development of graft-versus-host disease. Allogeneic transplant of purified hematopoietic stem cells and adoptive transfer of thymocytes into lethally irradiated hosts suggested that recent thymic emigrants can undergo homeostatic proliferation and acquire a memory-like phenotype. We found by BrdU pulse-chase, cell cycle, and annexin V analyses that IL-7 administration has significant proliferative and antiapoptotic effects on posttransplant peripheral T cells. We conclude that homeostatic expansion is important for T cell reconstitution after allogeneic BMT and involves both transferred mature T cells and recent thymic emigrants. Apart from its thymopoietic effects, IL-7 promotes peripheral T cell reconstitution through its selective proliferative and antiapoptotic effects on nonalloreactive and de novo-generated T cells, but has no effect on alloreactive T cells.
Nature Medicine | 2006
Johannes L. Zakrzewski; Adam A. Kochman; Sydney X. Lu; Theis H. Terwey; Theo D. Kim; Vanessa M. Hubbard; Stephanie J. Muriglan; David Suh; Odette M. Smith; Jeremy Grubin; Neel Patel; Andrew Chow; Javier Cabrera-Perez; Radhika Radhakrishnan; Adi Diab; Miguel Angel Perales; Gabrielle Rizzuto; Ewa Menet; Eric G. Pamer; Glen Heller; Juan Carlos Zúñiga-Pflücker; Onder Alpdogan; Marcel R.M. van den Brink
Immunoincompetence after allogeneic hematopoietic stem cell transplantation (HSCT) affects in particular the T-cell lineage and is associated with an increased risk for infections, graft failure and malignant relapse. To generate large numbers of T-cell precursors for adoptive therapy, we cultured mouse hematopoietic stem cells (HSCs) in vitro on OP9 mouse stromal cells expressing the Notch-1 ligand Delta-like-1 (OP9-DL1). We infused these cells, together with T-cell–depleted mouse bone marrow or purified HSCs, into lethally irradiated allogeneic recipients and determined their effect on T-cell reconstitution after transplantation. Recipients of OP9-DL1–derived T-cell precursors showed increased thymic cellularity and substantially improved donor T-cell chimerism (versus recipients of bone marrow or HSCs only). OP9-DL1–derived T-cell precursors gave rise to host-tolerant CD4+ and CD8+ populations with normal T-cell antigen receptor repertoires, cytokine secretion and proliferative responses to antigen. Administration of OP9-DL1–derived T-cell precursors increased resistance to infection with Listeria monocytogenes and mediated significant graft-versus-tumor (GVT) activity but not graft-versus-host disease (GVHD). We conclude that the adoptive transfer of OP9-DL1–derived T-cell precursors markedly enhances T-cell reconstitution after transplantation, resulting in GVT activity without GVHD.
Nature Medicine | 2002
Cornelius Schmaltz; Onder Alpdogan; Barry J. Kappel; Stephanie J. Muriglan; Jimmy A. Rotolo; Jennifer Ongchin; Lucy M. Willis; Andrew S. Greenberg; Jeffrey M. Eng; James M. Crawford; George F. Murphy; Hideo Yagita; Henning Walczak; Jacques J. Peschon; Marcel R.M. van den Brink
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that exhibits specific tumoricidal activity against a variety of tumors. It is expressed on different cells of the immune system and plays a role in natural killer cell–mediated tumor surveillance. In allogeneic hematopoietic-cell transplantation, the reactivity of the donor T cell against malignant cells is essential for the graft-versus-tumor (GVT) effect. Cytolytic activity of T cells is primarily mediated through the Fas–Fas ligand and perforin–granzyme pathways. However, T cells deficient for both Fas ligand and perforin can still exert GVT activity in vivo in mouse models. To uncover a potential role for TRAIL in donor T cell–mediated GVT activity, we compared donor T cells from TRAIL-deficient and wild-type mice in clinically relevant mouse bone-marrow transplantation models. We found that alloreactive T cells can express TRAIL, but the absence of TRAIL had no effect on their proliferative and cytokine response to alloantigens. TRAIL-deficient T cells showed significantly lower GVT activity than did TRAIL-expressing T cells, but no important differences in graft-versus-host disease, a major complication of allogeneic hematopoietic cell transplantation, were observed. These data suggest that strategies to enhance TRAIL-mediated GVT activity could decrease relapse rates of malignancies after hematopoietic cell transplantation without exacerbation of graft-versus-host disease.
Nature Reviews Immunology | 2004
Marcel R.M. van den Brink; Onder Alpdogan; Richard L. Boyd
Immune deficiency, together with its associated risks such as infections, is becoming an increasingly important clinical problem owing to the ageing of the general population and the increasing number of patients with HIV/AIDS, malignancies (especially those treated with intensive chemotherapy or radiotherapy) or transplants (of either solid organs or haematopoietic stem cells). Of all immune cells, T cells are the most often affected, leading to a prolonged deficiency of T cells, which has important clinical consequences. Accordingly, strategies to improve the recovery and function of T cells, as we discuss here, should have a direct impact on reducing the morbidity and mortality of many patients and should increase the efficacy of therapeutic and prophylactic vaccinations against microbial pathogens or tumours.
Journal of Experimental Medicine | 2004
S.J. Muriglan; Teresa Ramirez-Montagut; Onder Alpdogan; Thomas W. van Huystee; Jeffrey M. Eng; Vanessa M. Hubbard; Adam A. Kochman; Kartono H. Tjoe; Carlo Riccardi; Pier Paolo Pandolfi; Shimon Sakaguchi; Alan N. Houghton; Marcel R.M. van den Brink
Glucocorticoid-induced tumor necrosis factor receptor family-related gene (GITR) is a member of the tumor necrosis factor receptor (TNFR) family that is expressed at low levels on unstimulated T cells, B cells, and macrophages. Upon activation, CD4+ and CD8+ T cells up-regulate GITR expression, whereas immunoregulatory T cells constitutively express high levels of GITR. Here, we show that GITR may regulate alloreactive responses during graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation (BMT). Using a BMT model with major histocompatibility complex class I and class II disparity, we demonstrate that GITR stimulation in vitro and in vivo enhances alloreactive CD8+CD25− T cell proliferation, whereas it decreases alloreactive CD4+CD25− proliferation. Allo-stimulated CD4+CD25− cells show increased apoptosis upon GITR stimulation that is dependent on the Fas–FasL pathway. Recipients of an allograft containing CD8+CD25− donor T cells had increased GVHD morbidity and mortality in the presence of GITR-activating antibody (Ab). Conversely, recipients of an allograft with CD4+CD25− T cells showed a significant decrease in GVHD when treated with a GITR-activating Ab. Our findings indicate that GITR has opposite effects on the regulation of alloreactive CD4+ and CD8+ T cells.
Journal of Immunology | 2007
Gabrielle L. Goldberg; Onder Alpdogan; Stephanie J. Muriglan; Maree V. Hammett; Morag K. Milton; Jeffrey M. Eng; Vanessa M. Hubbard; Adam A. Kochman; Lucy M. Willis; Andrew S. Greenberg; Kartono H. Tjoe; Jayne Suzanne Sutherland; Ann Patricia Chidgey; Marcel R.M. van den Brink; Richard L. Boyd
Delayed immune reconstitution in adult recipients of allogeneic hemopoietic stem cell transplantations (HSCT) is related to age-induced thymic atrophy. Overcoming this paucity of T cell function is a major goal of clinical research but in the context of allogeneic transplants, any strategy must not exacerbate graft-vs-host disease (GVHD) yet ideally retain graft-vs-tumor (GVT) effects. We have shown sex steroid ablation reverses thymic atrophy and enhances T cell recovery in aged animals and in congenic bone marrow (BM) transplant but the latter does not have the complications of allogeneic T cell reactivity. We have examined whether sex steroid ablation promoted hemopoietic and T cell recovery following allogeneic HSCT and whether this benefit was negated by enhanced GVHD. BM and thymic cell numbers were significantly increased at 14 and 28 days after HSCT in castrated mice compared with sham-castrated controls. In the thymus, the numbers of donor-derived thymocytes and dendritic cells were significantly increased after HSCT and castration; donor-derived BM precursors and developing B cells were also significantly increased. Importantly, despite restoring T cell function, sex steroid inhibition did not exacerbate the development of GVHD or ameliorate GVT activity. Finally, IL-7 treatment in combination with castration had an additive effect on thymic cellularity following HSCT. These results indicate that sex steroid ablation can profoundly enhance thymic and hemopoietic recovery following allogeneic HSCT without increasing GVHD and maintaining GVT.
Blood | 2008
Sydney X. Lu; Onder Alpdogan; Janine Lin; Robert S. Balderas; Roberto Campos-Gonzalez; Xiao Wang; Guo-Jian Gao; David Suh; Christopher King; Melanie Chow; Odette M. Smith; Vanessa M. Hubbard; Johanne L. Bautista; Javier Cabrera-Perez; Johannes L. Zakrzewski; Adam A. Kochman; Andrew Chow; Grégoire Altan-Bonnet; Marcel R.M. van den Brink
Graft-versus-host disease (GVHD) is a serious complication of allogeneic bone marrow transplantation, and donor T cells are indispensable for GVHD. Current therapies have limited efficacy, selectivity, and high toxicities. We used a novel flow cytometry technique for the analysis of intracellular phosphorylation events in single cells in murine BMT models to identify and validate novel GVHD drug targets.(1-7) This method circumvents the requirement for large numbers of purified cells, unlike western blots. We defined a signaling profile for alloactivated T cells in vivo and identified the phosphorylation of ERK1/2 and STAT-3 as important events during T-cell (allo)activation in GVHD. We establish that interference with STAT-3 phosphorylation can inhibit T-cell activation and proliferation in vitro and GVHD in vivo. This suggests that phospho-specific flow cytometry is useful for the identification of promising drug targets, and ERK1/2 and STAT-3 phosphorylation in alloactivated T cells may be important for GVHD.
Seminars in Oncology | 2012
Onder Alpdogan; Marcel R.M. van den Brink
Successful allogeneic hematopoietic stem cell transplantation (HSCT) and solid organ transplantation require development of a degree of immune tolerance against allogeneic antigens. T lymphocytes play a critical role in allograft rejection, graft failure, and graft-versus-host disease (GVHD). T-cell tolerance occurs by two different mechanisms: (1) depletion of self-reactive T cells during their maturation in the thymus (central tolerance), and (2) suppression/elimination of self-reactive mature T cells in the periphery (peripheral tolerance). Induction of transplant tolerance improves transplantation outcomes. Adoptive immunotherapy with immune suppressor cells including regulatory T cells, natural killer (NK)-T cells, veto cells, and facilitating cells are promising therapies for modulation of immune tolerance. Achieving mixed chimerism with the combination of thymic irradiation and T-cell-depleting antibodies, costimulatory molecule blockade with/without inhibitory signal activation, and elimination of alloreactive T cells with varying methods including pre- or post-transplant cyclophosphamide administration appear to be effective in inducing transplant tolerance.
Cytotherapy | 2005
Adi Diab; Adam D. Cohen; Onder Alpdogan; Miguel Angel Perales
IL-15 is a pleiotropic cytokine that plays an important role in both the innate and adaptive immune system. IL-15 promotes the activation of neutrophils and macrophages, and is critical to DC function. In addition, IL-15 is essential to the development, homeostasis, function and survival of natural killer (NK) cells, NK T (NKT) cells and CD8+ T cells. Based on these properties, IL-15 has been proposed as a useful cytokine for immunotherapy. It is currently being investigated in settings of immune deficiency, for the in vitro expansion of T and NK cells, as well as an adjuvant for vaccines. In this paper, we will review the targeting of IL-15 for immunotherapy, with a particular emphasis on its effects on CD8+ T cells.