Ondrej Šedo
Central European Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ondrej Šedo.
Mass Spectrometry Reviews | 2011
Ondrej Šedo; Ivo Sedláček; Zbyněk Zdráhal
Direct matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) bacterial cell or lysate analysis appears to meet all the criteria required for a rapid and reliable analytical microorganism identification and taxonomical classification tool. Few-minute analytical procedure providing information extending up to sub-species level underlines the potential of the MALDI-MS profiling in comparison with other methods employed in the field. However, the quality of MALDI-MS profiles and consequently the performance of the method are influenced by numerous factors, which involve particular steps of the sample preparation procedure. This review is aimed at advances in development and optimization of the MALDI-MS profiling methodology. Approaches improving the quality of the MALDI-MS profiles and universal feasibility of the method are discussed.
International Journal of Systematic and Evolutionary Microbiology | 2010
Alexandr Nemec; Martin Musilek; Ondrej Šedo; Thierry De Baere; Martina Maixnerova; Tanny van der Reijden; Zbyněk Zdráhal; Mario Vaneechoutte; Lenie Dijkshoorn
Acinetobacter genospecies (genomic species) 10 and 11 were described by Bouvet and Grimont in 1986 on the basis of DNA-DNA reassociation studies and comprehensive phenotypic analysis. In the present study, the names Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., respectively, are proposed for these genomic species based on the congruence of results of polyphasic analysis of 33 strains (16 and 17 strains of genomic species 10 and 11, respectively). All strains were investigated by selective restriction fragment amplification (i.e. AFLP) analysis rpoB sequence analysis, amplified rDNA restriction analysis and tDNA intergenic length polymorphism analysis, and their nutritional and physiological properties were determined. Subsets of the strains were studied by 16S rRNA gene sequence analysis and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS or had been classified previously by DNA-DNA reassociation. Results indicate that A. bereziniae and A. guillouiae represent two phenetically and phylogenetically distinct groups within the genus Acinetobacter. Based on the comparative analysis of housekeeping genes (16S rRNA and rpoB genes), these species together represent a monophyletic branch within the genus. Despite their overall phenotypic similarity, the ability to oxidize d-glucose and to grow at 38 degrees C can be used in the presumptive differentiation of these two species from each other: with the exception of three strains that were positive for only one test, A. bereziniae strains were positive for both tests, whereas A. guillouiae strains were negative in these tests. The strains of A. bereziniae originated mainly from human clinical specimens, whereas A. guillouiae strains were isolated from different environmental sources in addition to human specimens. The type strain of A. bereziniae sp. nov. is LMG 1003(T) (=CIP 70.12(T) =ATCC 17924(T)) and that of A. guillouiae sp. nov. is LMG 988(T) (=CIP 63.46( T) =ATCC 11171(T) =CCUG 2491(T)).
International Journal of Food Microbiology | 2012
Marta Dušková; Ondrej Šedo; Kateřina Kšicová; Zbyněk Zdráhal; Renata Karpíšková
Lactobacilli are bacteria with important implications in food and feed fermentation. Detailed knowledge of the lactobacilli composition is of high relevance to food and health control, various industrial or biotechnological applications, etc., but accurate identification of the Lactobacillus species is not an easy task. In this study, three methods, i.e. polymerase chain reaction (PCR), amplified 16S rDNA restriction analysis with restrictase MseI (16S-ARDRA), and the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) were evaluated for their capabilities to identify Lactobacillus species. After comparison of the three methods on a set of 19 type/reference Lactobacillus strains, 148 strains isolated from dairy and meat products were characterized by PCR and MALDI-TOF MS. The strains were differentiated into nine and ten lactobacilli species by PCR and MALDI-TOF MS, respectively, with nine of these species being congruent. The success rates of species level assignment were 77% for PCR and 93% for MALDI-TOF MS that proved superior in the species identification. However, to differentiate between closely related Lactobacillus species, MALDI-TOF MS needs to be used in combination with genotypic techniques to achieve a more reliable identification.
Biochemical Journal | 2008
Emilie Lameignere; Lenka Malinovská; Margita Sláviková; Eric Duchaud; Edward P. Mitchell; Annabelle Varrot; Ondrej Šedo; Anne Imberty; Michaela Wimmerová
Chronic colonization of the lungs by opportunist bacteria such as Pseudomonas aeruginosa and members of the Bcc (Burkholderia cepacia complex) is the major cause of morbidity and mortality among CF (cystic fibrosis) patients. PA-IIL (lecB gene), a soluble lectin from Ps. aeruginosa, has been the subject of much interest because of its very strong affinity for fucose. Orthologues have been identified in the opportunist bacteria Ralstonia solanacearum, Chromobacterium violaceum and Burkholderia of Bcc. The genome of the J2315 strain of B. cenocepacia, responsible for epidemia in CF centres, contains three genes that code for proteins with PA-IIL domains. The shortest gene was cloned in Escherichia coli and pure recombinant protein, BclA (B. cenocepacia lectin A), was obtained. The presence of native BclA in B. cenocepacia extracts was checked using a proteomic approach. The specificity of recombinant BclA was characterized using surface plasmon resonance showing a preference for mannosides and supported with glycan array experiments demonstrating a strict specificity for oligomannose-type N-glycan structures. The interaction thermodynamics of BclA with methyl alpha-D-mannoside demonstrates a dissociation constant (K(d)) of 2.75 x 10(-6) M. The X-ray crystal structure of the complex with methyl alpha-D-mannoside was determined at 1.7 A (1 A=0.1 nm) resolution. The lectin forms homodimers with one binding site per monomer, acting co-operatively with the second dimer site. Each monomer contains two Ca2+ ions and one sugar ligand. Despite strong sequence similarity, the differences between BclA and PA-IIL in their specificity, binding site and oligomerization mode indicate that the proteins should have different roles in the bacteria.
Systematic and Applied Microbiology | 2014
Lenka Krizova; Martina Maixnerova; Ondrej Šedo; Alexandr Nemec
We investigated the taxonomic status of a phenetically unique group of 25 Acinetobacter strains which were isolated from multiple soil and water samples collected in natural ecosystems in the Czech Republic. Based on the comparative sequence analyses of the rpoB, gyrB, and 16S rRNA genes, the strains formed a coherent and well separated branch within the genus Acinetobacter. The genomic uniqueness of the group at the species level was supported by the low average nucleotide identity values (≤77.37%) between the whole genome sequences of strain ANC 3994(T) (NCBI accession no. APOH00000000) and the representatives of the known Acinetobacter species. Moreover, all 25 strains created a tight cluster clearly separated from all hitherto described species based on whole-cell protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and shared a unique combination of metabolic and physiological properties. The capacity to assimilate l-histidine and the inability to grow at 35°C differentiated them from their phenotypically closest neighbor, Acinetobacter johnsonii. We conclude that the 25 strains represent a novel Acinetobacter species, for which the name Acinetobacter bohemicus sp. nov. is proposed. The type strain of A. bohemicus is ANC 3994(T) (=CIP 110496(T)=CCUG 63842(T)=CCM 8462(T)).
International Journal of Systematic and Evolutionary Microbiology | 2011
Margarita Gomila; Ludmila Tvrzová; Andrea Teshim; Ivo Sedláček; Narjol Gonzalez-Escalona; Zbyněk Zdráhal; Ondrej Šedo; Jorge Froilán González; Antonio Bennasar; Edward R. B. Moore; Jorge Lalucat; Silvia Elena Murialdo
A polyphasic taxonomic approach was applied to the study of a Gram-negative bacterium (B2(T)) isolated from soil by selective enrichment with pentachlorophenol. 16S rRNA gene sequence analysis of strain B2(T) showed that the strain belongs to the genus Achromobacter within the Betaproteobacteria. The 16S rRNA gene sequence displayed more than 99 % similarity to the sequences of the type strains of all species of Achromobacter, with the highest sequence similarity to those of Achromobacter spanius CCM 7183(T) and A. piechaudii CCM 2986(T) (99.8 %). On the basis of phylogenetic analysis, genomic DNA-DNA relatedness and phenotypic characteristics, including chemotaxonomic (cellular fatty acid profile) analysis, a novel species is proposed, Achromobacter marplatensis sp. nov., with the type strain B2(T) ( = CCM 7608(T) = CCUG 56371(T) = CECT 7342(T)).
Systematic and Applied Microbiology | 2013
Ondrej Šedo; Alexandr Nemec; Lenka Křížová; Magdaléna Kačalová; Zbyněk Zdráhal
MALDI-TOF MS is currently becoming the method of choice for rapid identification of bacterial species in routine diagnostics. Yet, this method suffers from the inability to differentiate reliably between some closely related bacterial species including those of the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex, namely A. baumannii and Acinetobacter nosocomialis. In the present study, we evaluated a protocol which was different from that used in the Bruker Daltonics identification system (MALDI BioTyper) to improve species identification using a taxonomically precisely defined set of 105 strains representing the four validly named species of the ACB complex. The novel protocol is based on the change in matrix composition from alpha-cyano-4-hydroxycinnamic acid (saturated solution in water:acetonitrile:trifluoroacetic acid, 47.5:50:2.5, v/v) to ferulic acid (12.5mgml(-1) solution in water:acetonitrile:formic acid 50:33:17, v/v), while the other steps of sample processing remain unchanged. Compared to the standard protocol, the novel one extended the range of detected compounds towards higher molecular weight, produced signals with better mass resolution, and allowed the detection of species-specific signals. As a result, differentiation of A. nosocomialis and A. baumannii strains by cluster analysis was improved and 13 A. nosocomialis strains, assigned erroneously or ambiguously by using the standard protocol, were correctly identified.
Plant Physiology | 2013
Markéta Žd'árská; Pavlína Zatloukalová; Mariana Benítez; Ondrej Šedo; David Potěšil; Ondřej Novák; Jana Svačinová; Bedřich Pešek; Jiří Malbeck; Jana Vašíčková; Zbyněk Zdráhal; Jan Hejátko
Summary: The plant hormone cytokinin regulates the Arabidopsis proteome in a shoot- and root-specific way, and the cytokinin-mediated tissue-specific modulation of hormonal metabolism is an intrinsic component of the Arabidopsis response to cytokinins. The plant hormones cytokinins (CKs) regulate multiple developmental and physiological processes in Arabidopsis (Arabidopsis thaliana). Responses to CKs vary in different organs and tissues (e.g. the response to CKs has been shown to be opposite in shoot and root samples). However, the tissue-specific targets of CKs and the mechanisms underlying such specificity remain largely unclear. Here, we show that the Arabidopsis proteome responds with strong tissue and time specificity to the aromatic CK 6-benzylaminopurine (BAP) and that fast posttranscriptional and/or posttranslational regulation of protein abundance is involved in the contrasting shoot and root proteome responses to BAP. We demonstrate that BAP predominantly regulates proteins involved in carbohydrate and energy metabolism in the shoot as well as protein synthesis and destination in the root. Furthermore, we found that BAP treatment affects endogenous hormonal homeostasis, again with strong tissue specificity. In the shoot, BAP up-regulates the abundance of proteins involved in abscisic acid (ABA) biosynthesis and the ABA response, whereas in the root, BAP rapidly and strongly up-regulates the majority of proteins in the ethylene biosynthetic pathway. This was further corroborated by direct measurements of hormone metabolites, showing that BAP increases ABA levels in the shoot and 1-aminocyclopropane-1-carboxylic acid, the rate-limiting precursor of ethylene biosynthesis, in the root. In support of the physiological importance of these findings, we identified the role of proteins mediating BAP-induced ethylene production, METHIONINE SYNTHASE1 and ACC OXIDASE2, in the early root growth response to BAP.
Biochimica et Biophysica Acta | 2010
Pavel Bouchal; Iva Struhárová; Eva Budinská; Ondrej Šedo; Tereza Vyhlídalová; Zbyněk Zdráhal; Rob J.M. van Spanning; Igor Kučera
The switch from aerobic to anaerobic respiration in the bacterium Paracoccus denitrificans is orchestrated by the action of three FNR-type transcription regulators FnrP, NNR and NarR, which are sensors for oxygen, nitric oxide and nitrite, respectively. In this work, we analyzed the protein composition of four strains (wild type, FnrP-, NNR- and NarR-mutant strains) grown aerobically, semiaerobically and semiaerobically in the presence of nitrate to discover the global role of FNR-family transcription regulators using proteomics, with data validation at the transcript and genome levels. Expression profiles were acquired using two-dimensional gel electrophoresis for 737 protein spots, in which 640 proteins were identified using mass spectrometry. The annotated 2-D proteome map provided the most comprehensive coverage of P. denitrificans proteome available to-date and can be accessed on-line at http://www.mpiib-berlin.mpg.de/2D-PAGE/. Our results revealed several types of regulation under the conditions tested: (1) FnrP-controlled regulation of nitrous oxide reductase, UspA and OmpW as confirmed at protein, transcript and DNA level (position of FNR boxes). (2) Proteins regulated via additional regulators, including proteins involved in NNR and NarR regulons: nitrate reductase beta-subunit, TonB-dependent receptors, nitrite reductase, a TenA-type transcription regulator, and an unknown protein with an alpha/beta hydrolase fold. (3) Proteins whose expression was affected mainly by the growth condition. This group contains SSU ribosomal protein S305 / sigma(54) modulation protein, and two short-chain reductase-dehydrogenase proteins.
Naturwissenschaften | 2014
Stanislav Pekár; Ondrej Šedo; Eva Líznarová; Stanislav Korenko; Zbyněk Zdráhal
It is rare to find a true predator that repeatedly and routinely kills prey larger than itself. A solitary specialised ant-eating spider of the genus Zodarion can capture a relatively giant prey. We studied the trophic niche of this spider species and investigated its adaptations (behavioural and venomic) that are used to capture ants. We found that the spider captures mainly polymorphic Messor arenarius ants. Adult female spiders captured large morphs while tiny juveniles captured smaller morphs, yet in both cases ants were giant in comparison with spider size. All specimens used an effective prey capture strategy that protected them from ant retaliation. Juvenile and adult spiders were able to paralyse their prey using a single bite. The venom glands of adults were more than 50 times larger than those of juvenile spiders, but the paralysis latency of juveniles was 1.5 times longer. This suggests that this spider species possesses very potent venom already at the juvenile stage. Comparison of the venom composition between juvenile and adult spiders did not reveal significant differences. We discovered here that specialised capture combined with very effective venom enables the capture of giant prey.