Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Opa Vajragupta is active.

Publication


Featured researches published by Opa Vajragupta.


Free Radical Research | 2004

Manganese Complexes of Curcumin Analogues: Evaluation of Hydroxyl Radical Scavenging Ability, Superoxide Dismutase Activity and Stability towards Hydrolysis

Opa Vajragupta; Preecha Boonchoong; Lawrence J. Berliner

In order to improve the antioxidant property of curcumin and its analogue, diacetylcurcumin, manganese was incorporated into the structures in order to enhance superoxide dismutase (SOD) activity. Manganese (Mn) complexes of curcumin (CpCpx) and diacetylcurcumin (AcylCpCpx) were synthesized and firstly investigated for SOD activity and hydroxyl radical (HO•) scavenging ability. SOD activity was evaluated by both the nitroblue tetrazolium (NBT) reduction assay and electron paramagnetic resonance (EPR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trapping agent. CpCpx and AcylCpCpx inhibited the NBT reduction and decreased the DMPO/OOH adduct much greater than corresponding antioxidants or ligands, with IC50 values of 29.9 and 24.7 μM (NBT), and 1.09 and 2.40 mM (EPR), respectively. For EPR, potassium superoxide (KO2) was used as a source of O2-• where qualitative results suggested that CpCpx and AcylCpCpx were SOD mimics, which catalyze the conversion of O2-• to dioxygen and hydrogen peroxide (H2O2). Additionally, CpCpx and AcylCpCpx exhibited the great inhibition of DMPO/OH adduct formation with an IC50 of 0.57 and 0.37 mM, respectively, which were comparable to that of curcumin (IC50 of 0.64 mM), indicating that both Mn complexes are also an effective HO• scavenger. The stability against hydrolysis in water, various buffers and human blood/serum was carried out in vitro. It was found that both Mn complexes were pH and salt concentration dependent, being more stable in basic pH. In the human blood/serum test, CpCpx was more stable against hydrolysis than AcylCpCpx with about 10 and 20% of free Mn2+releasing, respectively.


European Journal of Medicinal Chemistry | 2014

Synthesis, biological evaluation and molecular modeling study of novel tacrine–carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer's disease

Supatra Thiratmatrakul; Chavi Yenjai; Pornthip Waiwut; Opa Vajragupta; Prasert Reubroycharoen; Michihisa Tohda; Chantana Boonyarat

New tacrine-carbazole hybrids were developed as potential multifunctional anti-Alzheimer agents for their cholinesterase inhibitory and radical scavenging activities. The developed compounds showed high inhibitory activity on acetylcholinesterase (AChE) with IC50 values ranging from 0.48 to 1.03 μM and exhibited good inhibition selectivity against AChE over butyrylcholinesterase (BuChE). Molecular modeling studies revealed that these tacrine-carbazole hybrids interacted simultaneously with the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. The derivatives containing methoxy group showed potent ABTS radical scavenging activity. Considering their neuroprotection, our results indicate that these derivatives can reduce neuronal death induced by oxidative stress and β-amyloid (Aβ). Moreover, S1, the highest potency for both radical scavenging and AChE inhibitory activity, exhibited an ability to improve both short-term and long-term memory deficit in mice induced by scopolamine. Overall, tacrine-carbazole derivatives can be considered as a candidate with potential impact for further pharmacological development in Alzheimers therapy.


Bioorganic & Medicinal Chemistry | 2000

Comparative quantitative structure-activity study of radical scavengers

Opa Vajragupta; Preecha Boonchoong; Yuvadee Wongkrajang

Classic and three-dimensional (3-D) QSAR analyses of 13 radical scavengers (1-13) were performed to derive two classic, two Apex-3-D and one comparative field analysis (CoMFA) models. Two classical models with predictive cross-validated r2 (Q2) over 0.96 indicated that the activity was attributed to the electronic COH and ELUMO, steric molar refractivity (MR) and lipophilic log P. Three-dimensional quantitative structure-activity relationship (3-D-QSAR) studies were performed by 3-D pharmacophore generation (Apex-3-D) and CoMFA techniques. For Apex-3-D studies, two best models with high Q2 (0.94 and 0.97) were yielded. Structural properties contributing to the activity were not only lipophilic but also the optimum steric property and geometry of side-chain composition. For CoMFA studies, the sp3 C(+1) probe provided the best Q2 of 0.79 with steric and electrostatic contributions of 42.3 and 57.7%, respectively. The activity of four new compounds (14-17) not included in the derivation were predicted with these models. Although the derived models were from limited data, the statistic relation was predictive. The linear correlations between the experimental IC50 values and the predicted values from classical and Apex-3-D models were found to be high and significant. The predicted activity of 17 from CoMFA was much lower than the experimental value; this deviation occurred according to the missing of hydrophobic field in standard CoMFA study. In vitro and ex vivo antilipid peroxidation in mouse brain and ESR studies of 14-17 were investigated for the radical-scavenging ability. The difference between the in vitro results, antilipid peroxidation and electron spin resonance (ESR) and ex vivo results in coumarin series was found. Thus, other properties for good bioavailability besides log P should also be taken into consideration.


Bioorganic & Medicinal Chemistry | 2003

Manganese-based complexes of radical scavengers as neuroprotective agents.

Opa Vajragupta; Preecha Boonchoong; Yaowared Sumanont; Hiroshi Watanabe; Yuvadee Wongkrajang; Naparat Kammasud

Manganese was incorporated in the structure of the selected antioxidants to mimic the superoxide dismutase (SOD) and to increase radical scavenging ability. Five manganese complexes (1-5) showed potent SOD activity in vitro with IC(50) of 1.18-1.84 microM and action against lipid peroxidation in vitro with IC(50) of 1.97-8.00 microM greater than their ligands and trolox. The manganese complexes were initially tested in vivo at 50 mg/kg for antagonistic activity on methamphetamine (MAP)-induced hypermotility resulting from dopamine release in the mice brain. Only manganese complexes of kojic acid (1) and 7-hydroxyflavone (3) exhibited the significant suppressions on MAP-induced hypermotility and did not significantly decrease the locomotor activity in normal condition. Manganese complex 3 also showed protective effects against learning and memory impairment in transient cerebral ischemic mice. These results supported the brain delivery and the role of manganese in SOD activity as well as in the modulation of brain neurotransmitters in the aberrant condition. Manganese complex 3 from 7-hydroxyflavone was the promising candidate for radical implicated neurodegenerative diseases.


Free Radical Research | 2000

Chroman amide and nicotinyl amide derivatives: Inhibition of lipid peroxidation and protection against head trauma

Opa Vajragupta; Suwanna Toasaksiri; Chantana Boonyarat; Yuvadee Wongkrajang; Penchom Peungvicha; Hiroshi Watanabe; Preecha Boonchoong

A series of chroman amide and nicotinyl amide derivatives was designed and synthesized for the treatment of traumatic and ischemic CNS injury. Five compounds were significantly more potent inhibitors of lipid peroxidation in vitro than the reference antioxidant, trolox (p < 0.01). Quantitative structure activity studies demonstrated that the inhibitory action was related to the ability to donate electrons, charge on hydroxy group and ELUMO, to scavenging radicals and to the lipophilicity log P, which determines penetration of membrane lipids. ESR study indicated the ability of 12 to scavenge the hydroxyl radicals. The most promising compound, [(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2yl)carbonyl]-3′-(aminoethyl) indole (12), inhibited ex vivo lipid peroxidation in a head injury model and showed potent in vivo neuroprotective efficacy. Improvement of neurological recovery within 1 h of injury (grip test score) by as much as 200% was observed together with significant anti-anoxia activity. Compound 12 was a potent antagonist of methamphetamine-induced hypermotility resulting from dopamine release in the mouse brain. These results support the importance of cerebroprotective radical-scavenging agents for the treatment of traumatic injury and anoxia as well as provide additional evidence for the role of oxygen radicals and dopamine in brain damage.


Bioorganic & Medicinal Chemistry Letters | 2013

Novel VEGFR-2 kinase inhibitors identified by the back-to-front approach

Kingkan Sanphanya; Suvara K. Wattanapitayakul; Suwadee Phowichit; Valery V. Fokin; Opa Vajragupta

We report a novel VEGFR-2 inhibitor, developed by the back-to-front approach. Docking experiments indicated that the 3-chloromethylphenylurea motif of the lead compound occupied the back pocket of VEGFR-2 kinase. An attempt was made to enhance the binding affinity of 1 by expanding the structure to access the front pocket using a triazole linker. A library of 1,4-(disubstituted)-1H-1,2,3-triazoles were screened in silico, and one compound (VH02) was identified with an IC50 against VEGFR-2 of 0.56μM. VH02 showed antiangiogenic effects, inhibiting tube formation in HUVEC cells (EA.hy926) at 0.3μM, 13 times lower than its cytotoxic dose. These enzymatic and cellular activities suggest that VH02 has potential as a lead for further optimization.


Molecules | 2012

From BACE1 inhibitor to multifunctionality of tryptoline and tryptamine triazole derivatives for Alzheimer's disease.

Jutamas Jiaranaikulwanitch; Piyarat Govitrapong; Valery V. Fokin; Opa Vajragupta

Efforts to discover new drugs for Alzheimer’s disease emphasizing multiple targets was conducted seeking to inhibit amyloid oligomer formation and to prevent radical formation. The tryptoline and tryptamine cores of BACE1 inhibitors previously identified by virtual screening were modified in silico for additional modes of action. These core structures were readily linked to different side chains using 1,2,3-triazole rings as bridges by copper catalyzed azide-alkyne cycloaddition reactions. Three compounds among the sixteen designed compounds exerted multifunctional activities including β-secretase inhibitory action, anti-amyloid aggregation, metal chelating and antioxidant effects at micromolar levels. The neuroprotective effects of the multifunctional compounds 6h, 12c and 12h on Aβ1-42 induced neuronal cell death at 1 μM were significantly greater than those of the potent single target compound, BACE1 inhibitor IV and were comparable to curcumin. The observed synergistic effect resulting from the reduction of the Aβ1-42 neurotoxicity cascade substantiates the validity of our multifunctional strategy in drug discovery for Alzheimer’s disease.


Journal of Biomolecular Screening | 2009

Virtual Screening Against α-Cobratoxin

Maleeruk Utsintong; Todd T. Talley; Palmer Taylor; Arthur J. Olson; Opa Vajragupta

α-Cobratoxin (Cbtx), the neurotoxin isolated from the venom of the Thai cobra Naja kaouthia , causes paralysis by preventing acetylcholine (ACh) binding to nicotinic acetylcholine receptors (nAChRs). In the current study, the region of the Cbtx molecule that is directly involved in binding to nAChRs is used as the target for anticobratoxin drug design. The crystal structure (1YI5) of Cbtx in complex with the acetylcholine binding protein (AChBP), a soluble homolog of the extracellular binding domain of nAChRs, was selected to prepare an α-cobratoxin active binding site for docking. The amino acid residues (Ser182-Tyr192) of the AChBP structure, the binding site of Cbtx, were used as the positive control to validate the prepared Cbtx active binding site (root mean square deviation < 1.2 Å). Virtual screening of the National Cancer Institute diversity set, a library of 1990 compounds with nonredundant pharmacophore profiles, using AutoDock against the Cbtx active site, revealed 39 potential inhibitor candidates. The adapted in vitro radioligand competition assays using [3H]epibatidine and [125I]bungarotoxin against the AChBPs from the marine species, Aplysia californica ( Ac), and from the freshwater snails, Lymnaea stagnalis (Ls ) and Bolinus truncates (Bt), revealed 4 compounds from the list of inhibitor candidates that had micromolar to nanomolar interferences for the toxin binding to AChBPs. Three hits (NSC42258, NSC121865, and NSC134754) can prolong the survival time of the mice if administered 30 min before injection with Cbtx, but only NSC121865 and NSC134754 can prolong the survival time if injected immediately after injection with Cbtx. These inhibitors serve as novel templates/scaffolds for the development of more potent and specific anticobratoxin. (Journal of Biomolecular Screening 2009:1109-1118)


Bioorganic & Medicinal Chemistry Letters | 2010

Triazolyl tryptoline derivatives as β-secretase inhibitors

Jutamas Jiaranaikulwanitch; Chantana Boonyarat; Valery V. Fokin; Opa Vajragupta

Tryptoline, a core structure of ochrolifuanine E, which is a hit compound from virtual screening of the Thai herbal database against BACE1 was used as a scaffold for the design of BACE1 inhibitors. The tryptoline was linked with different side chains by 1,2,3-triazole ring readily synthesized by catalytic azide-alkyne cycloaddition reactions. Twenty two triazolyl tryptoline derivatives were synthesized and screened for the inhibitory action against BACE1. JJCA-140 was the most potent inhibitor (IC(50)=1.49 μM) and was 100 times more selective for BACE1 than for Cat-D.


Free Radical Research | 2006

A novel neuroprotective agent with antioxidant and nitric oxide synthase inhibitory action

Opa Vajragupta; Chantana Boonyarat; Yukihisa Murakami; Michihisa Tohda; Kinzo Musatmoto; Arthur J. Olson; Hiroshi Watanabe

Nα-vanillyl-Nω-nitroarginine (N − 1) that combines the active functions of natural antioxidant and nitric oxide synthase inhibitor was developed for its neuroprotective properties. N − 1 exhibited protective effects against hydrogen peroxide-induced cell damage and the inhibitory effect on nitric oxide ‘NO’ production induced by calcium ionophore in NG 108-15 cells. N − 1 inhibited the constitutive NOS isolated from rat cerebellar in a greater extent than constitutive NOS from human endothelial cells. Low binding energy ( − 10.2 kcal/mol) obtained from docking N − 1 to nNOS supported the additional mode of action of N − 1 as an nNOS inhibitor. The in vivo neuroprotective effect on kainic acid-induced nitric oxide production and neuronal cell death in rat brain was investigated via microdialysis. Rats were injected intra-peritonially with N − 1 at 75 μmol/kg before kainic acid injection (10 mg/kg). The significant suppression effect on kainic acid-induced NO and significant increase in surviving cells were observed in the hippocampus at 40 min after the induction.

Collaboration


Dive into the Opa Vajragupta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valery V. Fokin

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur J. Olson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge