Opokua Ofori-Anyinam
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Opokua Ofori-Anyinam.
The Lancet | 2004
Pedro L. Alonso; Jahit Sacarlal; John J. Aponte; Amanda Leach; Eusebio Macete; Jessica Milman; Inacio Mandomando; Bart Spiessens; Caterina Guinovart; Mateu Espasa; Quique Bassat; Pedro Aide; Opokua Ofori-Anyinam; Margarita M. Navia; Sabine Corachan; Marc Ceuppens; Marie-Claude Dubois; Marie-Ange Demoitié; Filip Dubovsky; Clara Menéndez; Nadia Tornieporth; W. Ripley Ballou; Ricardo Thompson; Joe Cohen
BACKGROUND Development of an effective malaria vaccine could greatly contribute to disease control. RTS,S/AS02A is a pre-erythrocytic vaccine candidate based on Plasmodium falciparum circumsporozoite surface antigen. We aimed to assess vaccine efficacy, immunogenicity, and safety in young African children. METHODS We did a double-blind, phase IIb, randomised controlled trial in Mozambique in 2022 children aged 1-4 years. The study included two cohorts of children living in two separate areas which underwent different follow-up schemes. Participants were randomly allocated three doses of either RTS,S/AS02A candidate malaria vaccine or control vaccines. The primary endpoint, determined in cohort 1 (n=1605), was time to first clinical episode of P falciparum malaria (axillary temperature > or =37.5 degrees C and P falciparum asexual parasitaemia >2500 per microL) over a 6-month surveillance period. Efficacy for prevention of new infections was determined in cohort 2 (n=417). Analysis was per protocol. FINDINGS 115 children in cohort 1 and 50 in cohort 2 did not receive all three doses and were excluded from the per-protocol analysis. Vaccine efficacy for the first clinical episodes was 29.9% (95% CI 11.0-44.8; p=0.004). At the end of the 6-month observation period, prevalence of P falciparum infection was 37% lower in the RTS,S/AS02A group compared with the control group (11.9% vs 18.9%; p=0.0003). Vaccine efficacy for severe malaria was 57.7% (95% CI 16.2-80.6; p=0.019). In cohort 2, vaccine efficacy for extending time to first infection was 45.0% (31.4-55.9; p<0.0001). INTERPRETATION The RTS,S/AS02A vaccine was safe, well tolerated, and immunogenic. Our results show development of an effective vaccine against malaria is feasible.
The Journal of Infectious Diseases | 2009
Kent E. Kester; James F. Cummings; Opokua Ofori-Anyinam; Christian F. Ockenhouse; Urszula Krzych; Philippe Moris; Robert Schwenk; Robin Nielsen; Zufan Debebe; Evgeny Pinelis; Laure Y. Juompan; Jack Williams; Megan Dowler; V. Ann Stewart; Robert A. Wirtz; Marie-Claude Dubois; Marc Lievens; Joe Cohen; W. Ripley Ballou; D. Gray Heppner
BACKGROUND To further increase the efficacy of malaria vaccine RTS,S/AS02A, we tested the RTS,S antigen formulated using the AS01B Adjuvant System (GlaxoSmithKline Biologicals). METHODS In a double-blind, randomized trial, 102 healthy volunteers were evenly allocated to receive RTS,S/AS01B or RTS,S/AS02A vaccine at months 0, 1, and 2 of the study, followed by malaria challenge. Protected vaccine recipients were rechallenged 5 months later. RESULTS RTS,S/AS01B and RTS,S/AS02A were well tolerated and were safe. The efficacy of RTS,S/AS01B and RTS,S/AS02A was 50% (95% confidence interval [CI], 32.9%-67.1%) and 32% (95% CI, 17.6%-47.6%), respectively. At the time of initial challenge, the RTS,S/AS01B group had greater circumsporozoite protein (CSP)-specific immune responses, including higher immunoglobulin (Ig) G titers, higher numbers of CSP-specific CD4(+) T cells expressing 2 activation markers (interleukin-2, interferon [IFN]-gamma, tumor necrosis factor-alpha, or CD40L), and more ex vivo IFN-gamma enzyme-linked immunospots (ELISPOTs) than did the RTS,S/AS02A group. Protected vaccine recipients had a higher CSP-specific IgG titer (geometric mean titer, 188 vs 73 mug/mL; P < .001), higher numbers of CSP-specific CD4(+) T cells per 10(6) CD4(+) T cells (median, 963 vs 308 CSP-specific CD4(+) T cells/10(6) CD4(+) T cells; P < .001), and higher numbers of ex vivo IFN-gamma ELISPOTs (mean, 212 vs 96 spots/million cells; P < .001). At rechallenge, 4 of 9 vaccine recipients in each group were still completely protected. CONCLUSIONS The RTS,S/AS01B malaria vaccine warrants comparative field trials with RTS,S/AS02A to determine the best formulation for the protection of children and infants. The association between complete protection and immune responses is a potential tool for further optimization of protection. Trial registration. ClinicalTrials.gov identifier NCT00075049.
PLOS ONE | 2009
Michele Spring; James F. Cummings; Christian F. Ockenhouse; Sheetij Dutta; Randall Reidler; Evelina Angov; Elke S. Bergmann-Leitner; V. Ann Stewart; Stacey Bittner; Laure Y. Juompan; Mark G. Kortepeter; Robin Nielsen; Urszula Krzych; Ev Tierney; Lisa A. Ware; Megan Dowler; Cornelus C. Hermsen; Robert W. Sauerwein; Sake J. de Vlas; Opokua Ofori-Anyinam; David E. Lanar; Jack Williams; Kent E. Kester; Kathryn Tucker; Meng Shi; Elissa Malkin; Carole A. Long; Carter Diggs; Lorraine Soisson; Marie-Claude Dubois
Background This Phase 1/2a study evaluated the safety, immunogenicity, and efficacy of an experimental malaria vaccine comprised of the recombinant Plasmodium falciparum protein apical membrane antigen-1 (AMA-1) representing the 3D7 allele formulated with either the AS01B or AS02A Adjuvant Systems. Methodology/Principal Findings After a preliminary safety evaluation of low dose AMA-1/AS01B (10 µg/0.5 mL) in 5 adults, 30 malaria-naïve adults were randomly allocated to receive full dose (50 µg/0.5 mL) of AMA-1/AS01B (n = 15) or AMA-1/AS02A (n = 15), followed by a malaria challenge. All vaccinations were administered intramuscularly on a 0-, 1-, 2-month schedule. All volunteers experienced transient injection site erythema, swelling and pain. Two weeks post-third vaccination, anti-AMA-1 Geometric Mean Antibody Concentrations (GMCs) with 95% Confidence Intervals (CIs) were high: low dose AMA-1/AS01B 196 µg/mL (103–371 µg/mL), full dose AMA-1/AS01B 279 µg/mL (210–369 µg/mL) and full dose AMA-1/AS02A 216 µg/mL (169–276 µg/mL) with no significant difference among the 3 groups. The three vaccine formulations elicited equivalent functional antibody responses, as measured by growth inhibition assay (GIA), against homologous but not against heterologous (FVO) parasites as well as demonstrable interferon-gamma (IFN-γ) responses. To assess efficacy, volunteers were challenged with P. falciparum-infected mosquitoes, and all became parasitemic, with no significant difference in the prepatent period by either light microscopy or quantitative polymerase chain reaction (qPCR). However, a small but significant reduction of parasitemia in the AMA-1/AS02A group was seen with a statistical model employing qPCR measurements. Significance All three vaccine formulations were found to be safe and highly immunogenic. These immune responses did not translate into significant vaccine efficacy in malaria-naïve adults employing a primary sporozoite challenge model, but encouragingly, estimation of parasite growth rates from qPCR data may suggest a partial biological effect of the vaccine. Further evaluation of the immunogenicity and efficacy of the AMA-1/AS02A formulation is ongoing in a malaria-experienced pediatric population in Mali. Trial Registration www.clinicaltrials.gov NCT00385047
Human Vaccines | 2009
Kenneth Von Eschen; Royce Morrison; Madeleine Braun; Opokua Ofori-Anyinam; Els De Kock; Priya Pavithran; Marguerite Koutsoukos; Philippe Moris; Daniel Cain; Marie-Claude Dubois; Joe Cohen; W. Ripley Ballou
Tuberculosis (TB) remains uncontrolled in many parts of the world and the development of an effective vaccine against TB represents a high priority unmet medical need. Healthy PPD (tuberculin purified protein derivative)-negative adult volunteers, aged 18-40 years received three doses of the candidate Mtb72F/AS02A vaccine according to a 0-1-2 months schedule in an open-label Phase I study (NCT00730795). Solicited, unsolicited and serious adverse events (AEs), hematological and biochemical laboratory parameters were assessed. Mtb72F-specific humoral responses were assessed by ELISA and cell-mediated immune (CMI) responses by intracellular cytokine staining (ICS) and short-term ELISPOT assays. CMI responses to the component peptides (Mtb39a and the Mtb32a C- and N-terminal antigen domains, Mtb32C and Mtb32N) were also assessed by ICS. The Mtb72F/AS02A vaccine appeared to be mainly locally reactogenic but this was considered acceptable, since these AEs were usually transient and resolved within 1-2 days. Most AEs reported were mild in intensity, no serious AEs occurred, no medically significant biochemical or hematological abnormalities related to vaccination were measured and all AEs resolved without sequelae. The vaccine induced statistically significant changes in humoral and CMI response measures. The Mtb72F antigen induced good production of IL-2 and IFN γ in the ELISPOT assay and CD4+T cells expressing at least 2 activation markers (mainly CD40-L and IL-2) were observed with ICS. A similar CMI profile was observed with Mtb39a and Mtb32N. The induced CMI responses persisted for at least 6 months post-vaccination. All subjects were seropositive for anti-Mtb72F antibodies one month post-dose 2 and 6 months post-dose 3. This first trial in humans found Mtb72F/AS02A to have an, acceptable tolerability, to be immunogenic in healthy adults and warrants further development of the vaccine.
PLOS ONE | 2009
Mark E. Polhemus; Shon Remich; Bernhards Ogutu; John N. Waitumbi; Lucas Otieno; Stella Apollo; James F. Cummings; Kent E. Kester; Christian F. Ockenhouse; Ann V. Stewart; Opokua Ofori-Anyinam; Isabelle Ramboer; Conor P. Cahill; Marc Lievens; Marie-Claude Dubois; Marie-Ange Demoitié; Amanda Leach; Joe Cohen; W. Ripley Ballou; D. Gray Heppner
Background This study advances the clinical development of the RTS,S/AS01B candidate malaria vaccine to malaria endemic populations. As a primary objective it compares the safety and reactogenicity of RTS,S/AS01B to the more extensively evaluated RTS,S/AS02A vaccine. Methodology A Phase IIb, single centre, double-blind, controlled trial of 6 months duration with a subsequent 6 month single-blind follow-up conducted in Kisumu West District, Kenya between August 2005 and August 2006. 255 healthy adults aged 18 to 35 years were randomized (1∶1∶1) to receive 3 doses of RTS,S/AS02A, RTS,S/AS01B or rabies vaccine (Rabipur®; Chiron Behring GmbH) at months 0, 1, 2. The primary objective was the occurrence of severe (grade 3) solicited or unsolicited general (i.e. systemic) adverse events (AEs) during 7 days follow up after each vaccination. Principal Findings Both candidate vaccines had a good safety profile and were well tolerated. One grade 3 systemic AE occurred within 7 days of vaccination (RTS,S/AS01B group). No unsolicited AEs or SAEs were related to vaccine. A marked increase in anti-CS antibody GMTs was observed post Dose 2 of both RTS,S/AS01B (31.6 EU/mL [95% CI: 23.9 to 41.6]) and RTS,S/AS02A (16.7 EU/mL [95% CI: 12.9 to 21.7]). A further increase was observed post Dose 3 in both the RTS,S/AS01B (41.4 EU/mL [95% CI: 31.7 to 54.2]) and RTS,S/AS02A (21.4 EU/mL [95% CI: 16.0 to 28.7]) groups. Anti-CS antibody GMTs were significantly greater with RTS,S/AS01B compared to RTS,S/AS02A at all time points post Dose 2 and Dose 3. Both candidate vaccines produced strong anti-HBs responses. Vaccine efficacy in the RTS,S/AS01B group was 29.5% (95% CI: −15.4 to 56.9, p = 0.164) and in the RTS,S/AS02A group 31.7% (95% CI: −11.6 to 58.2, p = 0.128). Conclusions Both candidate malaria vaccines were well tolerated over a 12 month surveillance period. A more favorable immunogenicity profile was observed with RTS,S/AS01B than with RTS,S/AS02A. Trial Registration Clinicaltrials.gov NCT00197054
Vaccine | 2013
Isabel Leroux-Roels; Sheron Forgus; Fien De Boever; Frédéric Clement; Marie-Ange Demoitié; Pascal Mettens; Philippe Moris; Edouard Ledent; Geert Leroux-Roels; Opokua Ofori-Anyinam
BACKGROUND The Bacille Calmette-Guérin (BCG) tuberculosis (TB) vaccine provides incomplete protection, necessitating development of an effective vaccine against TB disease. The Mtb72F/AS02 candidate vaccine was previously shown to be clinically well tolerated and immunogenic in Purified Protein Derivative (PPD)-negative adults. To improve the stability of Mtb72F, a point mutation was introduced into a putative serine protease site to give the final M72 construct. AS01 is an Adjuvant System that can potentially improve both humoral and cellular immune responses compared to the AS02 Adjuvant System or unadjuvanted vaccine. This study evaluated the safety and immunogenicity in Mtb-naïve adults of vaccines containing 40 μg of the M72 antigen with AS02 or AS01 and compared the results with Mtb72F/AS02 vaccine (40 μg dose), M72 in saline (40 μg dose) and AS01 alone. METHODS In this Phase I/II observer-blind controlled trial, 110 participants were randomized (4:4:1:1:1) to receive M72/AS01, M72/AS02, Mtb72F/AS02, M72/saline or AS01, following a 0, 1-month schedule. Subjects receiving the adjuvanted M72 vaccines were followed up until 3 years post vaccination. Evaluation of the immune response and safety/reactogenicity was performed. RESULTS For all vaccines, solicited adverse events (AEs) were predominantly mild to moderate and transient. No vaccine-related serious AEs occurred and no subject withdrew due to an AE. Immune responses induced by Mtb72F and M72 antigens combined with AS02 were similar. M72/AS01 and M72/AS02 induced robust polyfunctional M72-specific CD4(+) T cell and antibody responses persisting at 3 years, with the highest CD4(+) T cell responses found with M72/AS01. CONCLUSION This first clinical study with M72/AS01 and M72/AS02 showed that both vaccines were clinically well tolerated and induced high magnitude and persistent cell-mediated and humoral immune responses. The Mtb72F/AS02 and M72/AS02 vaccines were comparably immunogenic with significantly higher immune responses compared to the M72/saline control. Of the formulations tested, M72/AS01 demonstrated significantly higher vaccine specific Th1 CD4(+) T cell responses supporting its further clinical evaluation.
PLOS ONE | 2008
Meta Roestenberg; Ed Remarque; Erik de Jonge; Rob Hermsen; Hildur E. Blythman; Odile Leroy; Egeruan B. Imoukhuede; Søren Jepsen; Opokua Ofori-Anyinam; Bart W. Faber; Clemens H. M. Kocken; Miranda Arnold; Vanessa Walraven; Karina Teelen; Will Roeffen; Quirijn de Mast; W. Ripley Ballou; Joe Cohen; Marie-Claude Dubois; Stéphane Ascarateil; Andre van der Ven; Alan W. Thomas; Robert W. Sauerwein
Background Plasmodium falciparum Apical Membrane Antigen 1 (PfAMA1) is a candidate vaccine antigen expressed by merozoites and sporozoites. It plays a key role in red blood cell and hepatocyte invasion that can be blocked by antibodies. Methodology/Principal Findings We assessed the safety and immunogenicity of recombinant PfAMA1 in a dose-escalating, phase Ia trial. PfAMA1 FVO strain, produced in Pichia pastoris, was reconstituted at 10 µg and 50 µg doses with three different adjuvants, Alhydrogel™, Montanide ISA720 and AS02 Adjuvant System. Six randomised groups of healthy male volunteers, 8–10 volunteers each, were scheduled to receive three immunisations at 4-week intervals. Safety and immunogenicity data were collected over one year. Transient pain was the predominant injection site reaction (80–100%). Induration occurred in the Montanide 50 µg group, resulting in a sterile abscess in two volunteers. Systemic adverse events occurred mainly in the AS02 groups lasting for 1–2 days. Erythema was observed in 22% of Montanide and 59% of AS02 group volunteers. After the second dose, six volunteers in the AS02 group and one in the Montanide group who reported grade 3 erythema (>50 mm) were withdrawn as they met the stopping criteria. All adverse events resolved. There were no vaccine-related serious adverse events. Humoral responses were highest in the AS02 groups. Antibodies showed activity in an in vitro growth inhibition assay up to 80%. Upon stimulation with the vaccine, peripheral mononuclear cells from all groups proliferated and secreted IFNγ and IL-5 cytokines. Conclusions/Significance All formulations showed distinct reactogenicity profiles. All formulations with PfAMA1 were immunogenic and induced functional antibodies. Trial Registration Clinicaltrials.gov NCT00730782
The Journal of Infectious Diseases | 2010
Maryanne Vahey; Zhining Wang; Kent E. Kester; James F. Cummings; D. Gray Heppner; Martin Nau; Opokua Ofori-Anyinam; Joe Cohen; Thierry Coche; W. Ripley Ballou; Christian F. Ockenhouse
BACKGROUND Patterns of expressed genes in the peripheral blood mononuclear cells of persons who were receiving RTS,S/AS01 or RTS,S/AS02 malaria vaccine and were undergoing experimental challenge with mosquito-borne falciparum malaria were examined to identify markers associated with protection. METHODS Thirty-nine vaccine recipients were assessed at study entry; on the day of the third vaccination; at 24 h, 72 h, and 2 weeks after vaccination; and on day 5 after challenge. Of 39 vaccine recipients, 13 were protected and 26 were not. Eleven vaccine recipients exhibited delayed onset of parasitemia. All infectivity control subjects developed parasitemia. Prediction analysis of microarrays identified genes corresponding with protection. Gene set enrichment analysis identified sets of genes associated with protection after the third vaccination and before challenge. RESULTS After the third vaccination and before challenge, differential expression of genes in the immunoproteasome pathway distinguished protected and nonprotected persons. At 5 days after challenge, differential expression of genes associated with programmed cell death distinguished between subjects protected and not protected from malaria blood-stage infection. CONCLUSIONS The up-regulation of genes associated with the efficient processing of major histocompatibility complex peptides suggests a potential role of the vaccine in conferring major histocompatibility complex class 1-mediated protection and may represent a useful surrogate marker of vaccine efficacy without the need for challenge.
American Journal of Respiratory and Critical Care Medicine | 2013
Cheryl L. Day; Michele Tameris; Nazma Mansoor; Michele van Rooyen; Marwou de Kock; Hennie Geldenhuys; Mzwandile Erasmus; Lebohang Makhethe; E. Jane Hughes; Sebastian Gelderbloem; Anne Bollaerts; Patricia Bourguignon; Joe Cohen; Marie-Ange Demoitié; Pascal Mettens; Philippe Moris; Jerald C. Sadoff; Anthony Hawkridge; Gregory D. Hussey; Hassan Mahomed; Opokua Ofori-Anyinam; Willem A. Hanekom
RATIONALE Tuberculosis (TB) is a major cause of morbidity and mortality worldwide, thus there is an urgent need for novel TB vaccines. OBJECTIVES We investigated a novel TB vaccine candidate, M72/AS01, in a phase IIa trial of bacille Calmette-Guérin-vaccinated, HIV-uninfected, and Mycobacterium tuberculosis (Mtb)-infected and -uninfected adults in South Africa. METHODS Two doses of M72/AS01 were administered to healthy adults, with and without latent Mtb infection. Participants were monitored for 7 months after the first dose; cytokine production profiles, cell cycling, and regulatory phenotypes of vaccine-induced T cells were measured by flow cytometry. MEASUREMENTS AND MAIN RESULTS The vaccine had a clinically acceptable safety profile, and induced robust, long-lived M72-specific T-cell and antibody responses. M72-specific CD4 T cells produced multiple combinations of Th1 cytokines. Analysis of T-cell Ki67 expression showed that most vaccination-induced T cells did not express Th1 cytokines or IL-17; these cytokine-negative Ki67(+) T cells included subsets of CD4 T cells with regulatory phenotypes. PD-1, a negative regulator of activated T cells, was transiently expressed on M72-specific CD4 T cells after vaccination. Specific T-cell subsets were present at significantly higher frequencies after vaccination of Mtb-infected versus -uninfected participants. CONCLUSIONS M72/AS01 is clinically well tolerated in Mtb-infected and -uninfected adults, induces high frequencies of multifunctional T cells, and boosts distinct T-cell responses primed by natural Mtb infection. Moreover, these results provide important novel insights into how this immunity may be appropriately regulated after novel TB vaccination of Mtb-infected and -uninfected individuals. Clinical trial registered with www.clinicaltrials.gov (NCT 00600782).
PLOS ONE | 2009
Seth Owusu-Agyei; Daniel Ansong; Kwaku Poku Asante; Sandra K. Owusu; Ruth Owusu; Naana Ayiwa Wireko Brobby; David Dosoo; Alex Osei Akoto; Kingsley Osei-Kwakye; Emmanuel Asafo Adjei; Kwadwo Owusu Boahen; Justice Sylverken; George Adjei; David Sambian; Stephen Apanga; Kingsley Kayan; Johan Vekemans; Opokua Ofori-Anyinam; Amanda Leach; Marc Lievens; Marie-Ange Demoitié; Marie-Claude Dubois; Joe Cohen; W. Ripley Ballou; Barbara Savarese; Daniel Chandramohan; John O. Gyapong; Paul Milligan; Sampson Antwi; Tsiri Agbenyega
Background The target delivery channel of RTS,S candidate malaria vaccines in malaria-endemic countries in Africa is the World Health Organisation Expanded Program on Immunization. As an Adjuvant System, age de-escalation and schedule selection step, this study assessed 3 schedules of RTS,S/AS01E and RTS,S/AS02D in infants and young children 5–17 months of age in Ghana. Methodology A Phase II, partially-blind randomized controlled study (blind to vaccine, not to schedule), of 19 months duration was conducted in two (2) centres in Ghana between August 2006 and May 2008. Subjects were allocated randomly (1∶1∶1∶1∶1∶1) to one of six study groups at each study site, each defining which vaccine should be given and by which schedule (0,1-, 0,1,2- or 0,1,7-months). For the 0,1,2-month schedule participants received RTS,S/AS01E or rabies vaccine at one center and RTS,S/AS01E or RTS,S/AS02D at the other. For the other schedules at both study sites, they received RTS,S/AS01E or RTS,S/AS02D. The primary outcome measure was the occurrence of serious adverse events until 10 months post dose 1. Results The number of serious adverse events reported across groups was balanced. One child had a simple febrile convulsion, which evolved favourably without sequelae, considered to be related to RTS,S/AS01E vaccination. Low grade reactions occurred slightly more frequently in recipients of RTS,S/AS than rabies vaccines; grade 3 reactions were infrequent. Less local reactogenicity occurred with RTS,S/AS01E than RTS,S/AS02D. Both candidate vaccines were highly immunogenic for anti-circumsporozoite and anti-Hepatitis B Virus surface antigen antibodies. Recipients of RTS,S/AS01E compared to RTS,S/AS02D had higher peak anti-circumsporozoite antibody responses for all 3 schedules. Three dose schedules were more immunogenic than 2 dose schedules. Area under the curve analyses for anti-circumsporozoite antibodies were comparable between the 0,1,2- and 0,1,7-month RTS,S/AS01E schedules. Conclusions Both candidate malaria vaccines were well tolerated. Anti-circumsporozoite responses were greater with RTS,S/AS01E than RTS,S/AS02D and when 3 rather than 2 doses were given. This study supports the selection of RTS,S/AS01E and a 3 dose schedule for further development in children and infants. Trial Registration ClinicalTrials.gov NCT00360230