Orazio Prezzavento
University of Catania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Orazio Prezzavento.
Journal of Neurochemistry | 2009
Vuokko Antonini; Orazio Prezzavento; Marino Coradazzi; Agostino Marrazzo; Simone Ronsisvalle; Emanuela Arena; Giampiero Leanza
J. Neurochem. (2009) 109, 744–754.
Bioorganic & Medicinal Chemistry | 2011
Daniela Rossi; Alice Pedrali; Mariangela Urbano; Raffaella Gaggeri; Massimo Serra; Leyden Fernández; Michael Fernández; Julio Caballero; Simone Ronsisvalle; Orazio Prezzavento; Dirk Schepmann; Bernhard Wuensch; Marco Peviani; Daniela Curti; Ornella Azzolina; Simona Collina
Herein we report the synthesis, drug-likeness evaluation, and in vitro studies of new sigma (σ) ligands based on arylalkenylaminic scaffold. For the most active olefin the corresponding arylalkylamine was studied. Novel arylalkenylamines generally possess high σ(1) receptor affinity (K(i) values <25 nM) and good σ(1)/σ(2) selectivity (K(i)σ(2) >100). Particularly, the piperidine derivative (E)-17 and its arylalkylamine analog (R,S)-33 were observed to be excellent σ(1) receptor ligands (K(i)=0.70 and 0.86 nM, respectively) and to display significantly high selectivity over σ(2), μ-, and κ-opioid receptors and phencyclidine (PCP) binding site of the N-methyl-d-aspartate (NMDA) receptors. Moreover in PC12 cells (R,S)-33 promoted the nerve growth factor (NGF)-induced neurite outgrowth and elongation. Co-administration of the selective σ(1) receptor antagonist BD-1063 totally counteracted this effect, confirming that σ(1) receptors are involved in the (R,S)-33 modulation of the NGF effect in PC12 cells and suggesting a σ(1) agonist profile. As a part of our work, a threedimensional σ(1) pharmacophore model was also developed employing GALAHAD methodology. Only active compounds were used for deriving this model. The model included two hydrophobes and a positive nitrogen as relevant features and it was able to discriminate between molecules with and without affinity toward σ(1) receptor subtype.
Pure and Applied Chemistry | 2001
Giuseppe Ronsisvalle; Agostino Marrazzo; Orazio Prezzavento; Alfredo Cagnotto; Tiziana Mennini; Carmela Parenti; Giovanna M. Scoto
New racemic and chiral methyl 2-{[4-(4-chlorophenyl)-4-hydroxypiperi-din-1-yl]methyl}-1-phenylcyclopropanecarboxylate derivatives were synthesized in order to obtain sigma ligands with increased affinity and selectivity compared to (+)-MPCB and haloperidol. The cis-(±)-7 racemic mixture showed a better binding affinity and selectivity than the (±)-8 trans isomers. Between the two cis enantiomers, (+)-7, with configuration (1R,2S), showed a very high affinity and the best selectivity for s1. All compounds synthesized (79) showed a reduced or negligible affinity for opioid and dopaminergic D1 and D2 receptors. Nociceptive in vivo test confirms that (+)-7 (namely MR200), such as non-selective antagonist haloperidol, increased the analgesic effect induced by the k opioid selective ligand U50,488H and reversed the inhibiting effect of (+)-pentazocine on analgesia.
Neuropharmacology | 2003
Delphine Moison; Philippe De Deurwaerdère; Alfredo Cagnotto; Agostino Marrazzo; Orazio Prezzavento; Giuseppe Ronsisvalle; Tiziana Mennini; Umberto Spampinato
In this study, using the new sigma(1/2) (sigma(1/2)) compound MR200, its parent drug haloperidol and the sigma ligand 1,3-di-o-tolylguanidine (DTG), we have investigated the role of striatal sigma receptors in the control of basal dopamine (DA) outflow, by coupling in vitro binding experiments and in vivo microdialysis in the striatum of halothane-anesthetized rats. MR200 with respect to haloperidol, exhibits high affinity for sigma(1) (1.5 nM) and sigma(2) (21.9 nM) receptors, but only negligible affinity for DA receptors. Compared to DTG, MR200 has similar selectivity across neurotransmitter systems, and 46 times higher affinity for sigma(1) receptors. Intrastriatal application of MR200 at 10, but not 0.1 or 1 microM, elicited a pronounced decrease in striatal DA release (-45% of control values). This inhibitory effect was preceded by a transient increase in DA release (+50% over baseline) after 100 microM MR200 administration. DTG at 100, but not 10 microM, significantly reduced DA release (-40%). Haloperidol, whilst increasing DA release at 1 microM, induced a delayed decrease in DA release after 10 microM application. Finally, haloperidol (10 microM) did not modify the inhibitory effect of 10 microM MR200. These results show that striatal sigma receptors control striatal DA release in resting conditions.
Life Sciences | 2008
Orazio Prezzavento; Carmela Parenti; Agostino Marrazzo; Simone Ronsisvalle; Franco Vittorio; Giuseppina Aricò; Giovanna M. Scoto; Giuseppe Ronsisvalle
The compound (1R,2S/1S,2R)-2-[4-hydroxy-4-phenylpiperidin-1-yl)methyl]-1-(4-methylphenyl) cyclopropanecarboxylate [(+/-)-PPCC] is a ligand with high affinity for sigma (sigma) sites of which the selectivity towards several other receptor systems has been demonstrated. Given the existence of a relationship between the sigma system and the kappa opioid (KOP)-mediated analgesia, to characterize the pharmacological properties of (+/-)-PPCC we analyzed its influence on the analgesic effect of the systemic injected kappa agonist (-)-U-50,488H comparing the effects with those shown by (+)-pentazocine and BD1047. The results demonstrate that the systemic administration of (+/-)-PPCC (1 mg/kg s.c.) does not modify basal tail-flick latency. Pre-treatment with (+/-)-PPCC, at the same dose, significantly decreased the antinociceptive effect of (-)-U-50,488H, analogously to the sigma compounds used. This study confirms that (+/-)-PPCC plays the role of sigma agonist in this model and strengthens the hypothesis of the sigma receptor modulatory role on KOP-mediated analgesia.
Journal of Medicinal Chemistry | 2011
Agostino Marrazzo; Enrique J. Cobos; Carmela Parenti; Giuseppina Aricò; Giuseppina Marrazzo; Simone Ronsisvalle; Lorella Pasquinucci; Orazio Prezzavento; Nicola Antonio Colabufo; Marialessandra Contino; Luis Garrido González; Giovanna M. Scoto; Giuseppe Ronsisvalle
Novel enantiomers and diastereoisomers structurally related to σ ligand (+)-MR200 were synthesized to improve σ(1)/σ(2) subtype selectivity. The selective σ(1) ligand (-)-8 showed an antagonist profile determined by phenytoin differential modulation of binding affinity in vitro, confirmed in vivo by an increase of κ opioid analgesia. The σ(2) ligand (-)-9 displayed agonist properties in an in vitro isolated organ bath assay and antiproliferative effects on LNCaP and PC3 prostate cancer cell lines.
Journal of Alzheimer's Disease | 2011
Vuokko Antonini; Agostino Marrazzo; Giulio Kleiner; Marino Coradazzi; Simone Ronsisvalle; Orazio Prezzavento; Giuseppe Ronsisvalle; Giampiero Leanza
Sigma-1 receptor agonists have recently attracted much attention as potential therapeutic drugs for cognitive and affective disorders, however, it is still unclear whether they act via modulation of transmitter release or activation of sigma-1 receptors in memory-related brain regions. In the present study,we have investigated the anti-amnesic and neuroprotective actions of the compound (-)-methyl (1S,2R)-2-{[1-adamantyl(methyl)amino]methyl}-1-phenylcyclopropane-carboxylate) [(-)-MR22],a selective sigma-1 receptor agonist able to protect cultured cortical neurons from amyloid toxicity. To this aim, cognitive deficits, cholinergic loss, and amyloid peptide accumulation were obtained in the rat by simultaneous injections of a selective immunotoxin and pre-aggregated amyloid peptide into the basal forebrain and the hippocampus, respectively. At about five–six weeks post-lesion, the double-lesioned animals exhibited dramatic deficits in spatial learning and memory, whereas animals with single injections of either compound were not or only marginally affected, in spite of equally severe cholinergic loss oramyloid deposition. Administration of (-)-MR22 appeared to reverse cognitive impairments in double lesioned animals, whereas pre-treatment with the selective sigma-1 antagonist BD1047 abolished this effect. Moreover, (-)-MR22 normalized the levels of cell-associated amyloid-β protein precursor (AβPP) in the neocortex and hippocampus, thus sustaining a non-amyloidogenic AβPP processing. By contrast, treatment with (-)-MR22 produced no effects whatsoever in intact animals. Thus, sigma-1 receptor agonists such as (-)-MR22 may ameliorate perturbed cognitive abilities and exert a protective action onto target neurons, holding promises as viable tools for memory enhancement and neuroprotection.
Journal of Medicinal Chemistry | 2010
Orazio Prezzavento; Agata Campisi; Carmela Parenti; Simone Ronsisvalle; Giuseppina Aricò; Emanuela Arena; Marco Pistolozzi; Giovanna M. Scoto; Carlo Bertucci; A. Vanella; Giuseppe Ronsisvalle
The enantiomers of cis-(+/-)-methyl (1R,2S/1S,2R)-2-[(4-hydroxy-4-phenylpiperidin-1-yl)methyl]-1-(4-methylphenyl)cyclopropanecarboxylate [1, (+/-)-PPCC], a selective sigma ligand, were synthesized. The (+)- and (-)-enantiomers bind predominantly to sigma(1) receptors and have a reduced sigma(2) affinity. Both individually restore the astroglial oxidative status modified by glutamate, counteracting also transglutaminase-2 overexpression. They exhibited in vivo anti-opioid effects on kappa opioid (KOP) receptor-mediated analgesia. Our findings demonstrate that the enantiomers display mainly sigma(1) agonist activity and that they have neuroprotective effects.
European Journal of Pharmaceutical Sciences | 2017
Antonio Rescifina; Giuseppe Floresta; Agostino Marrazzo; Carmela Parenti; Orazio Prezzavento; Giovanni Nastasi; Maria Dichiara; Emanuele Amata
Abstract For the first time in sigma‐2 (&sgr;2) receptor field, a quantitative structure–activity relationship (QSAR) model has been built using pKi values of the whole set of known selective &sgr;2 receptor ligands (548 compounds), taken from the Sigma‐2 Receptor Selective Ligands Database (S2RSLDB) (http://www.researchdsf.unict.it/S2RSLDB/), through the Monte Carlo technique and employing the software CORAL. The model has been developed by using a large and structurally diverse set of compounds, allowing for a prediction of different populations of chemical compounds endpoint (&sgr;2 receptor pKi). The statistical quality reached, suggested that model for pKi determination is robust and possesses a satisfactory predictive potential. The statistical quality is high for both visible and invisible sets. The screening of the FDA approved drugs, external to our dataset, suggested that sixteen compounds might be repositioned as &sgr;2 receptor ligands (predicted pKi ≥ 8). A literature check showed that six of these compounds have already been tested for affinity at &sgr;2 receptor and, of these, two (Flunarizine and Terbinafine) have shown an experimental &sgr;2 receptor pKi > 7. This suggests that this QSAR model may be used as focusing screening filter in order to prospectively find or repurpose new drugs with high affinity for the &sgr;2 receptor, and overall allowing for an enhanced hit rate respect to a random screening. Graphical abstract Figure. No Caption available.
Journal of Medicinal Chemistry | 2013
Orazio Prezzavento; Emanuela Arena; Carmela Parenti; Lorella Pasquinucci; Giuseppina Aricò; Giovanna M. Scoto; S. Grancara; A. Toninello; Simone Ronsisvalle
Herein we report the synthesis of new bifunctional sigma-1 (σ1)-selective ligands with antioxidant activity. To achieve this goal, we combined the structure of lipoic acid, a universal antioxidant, with an appropriate sigma aminic moiety. Ligands 14 and 26 displayed high affinity and selectivity for σ1 receptors (Kiσ1 = 1.8 and 5.5 nM; Kiσ2/σ1 = 354 and 414, respectively). Compound 26 exhibited in vivo antiopioid effects on kappa opioid (KOP) receptor-mediated analgesia. In rat liver and brain mitochondria (RLM, RBM), this compound significantly reduced the swelling and the oxidation of thiol groups induced by calcium ions. Our results demonstrate that the tested compound has protective effects against oxidative stress.