Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oren Shriki is active.

Publication


Featured researches published by Oren Shriki.


Neural Computation | 2003

Rate models for conductance-based cortical neuronal networks

Oren Shriki; David Hansel; Haim Sompolinsky

Population rate models provide powerful tools for investigating the principles that underlie the cooperative function of large neuronal systems. However, biophysical interpretations of these models have been ambiguous. Hence, their applicability to real neuronal systems and their experimental validation have been severely limited. In this work, we show that conductance-based models of large cortical neuronal networks can be described by simplified rate models, provided that the network state does not possess a high degree of synchrony. We first derive a precise mapping between the parameters of the rate equations and those of the conductance-based network models for time-independent inputs. This mapping is based on the assumption that the effect of increasing the cells input conductance on its f-I curve is mainly subtractive. This assumption is confirmed by a single compartment Hodgkin-Huxley type model with a transient potassium A-current. This approach is applied to the study of a network model of a hypercolumn in primary visual cortex. We also explore extensions of the rate model to the dynamic domain by studying the firing-rate response of our conductance-based neuron to time-dependent noisy inputs. We show that the dynamics of this response can be approximated by a time-dependent second-order differential equation. This phenomenological single-cell rate model is used to calculate the response of a conductance-based network to time-dependent inputs.


The Journal of Neuroscience | 2013

Neuronal Avalanches in the Resting MEG of the Human Brain

Oren Shriki; Jeff Alstott; Frederick W. Carver; Tom Holroyd; Richard N. Henson; Marie L. Smith; Richard Coppola; Edward T. Bullmore; Dietmar Plenz

What constitutes normal cortical dynamics in healthy human subjects is a major question in systems neuroscience. Numerous in vitro and in vivo animal studies have shown that ongoing or resting cortical dynamics are characterized by cascades of activity across many spatial scales, termed neuronal avalanches. In experiment and theory, avalanche dynamics are identified by two measures: (1) a power law in the size distribution of activity cascades with an exponent of −3/2 and (2) a branching parameter of the critical value of 1, reflecting balanced propagation of activity at the border of premature termination and potential blowup. Here we analyzed resting-state brain activity recorded using noninvasive magnetoencephalography (MEG) from 124 healthy human subjects and two different MEG facilities using different sensor technologies. We identified large deflections at single MEG sensors and combined them into spatiotemporal cascades on the sensor array using multiple timescales. Cascade size distributions obeyed power laws. For the timescale at which the branching parameter was close to 1, the power law exponent was −3/2. This relationship was robust to scaling and coarse graining of the sensor array. It was absent in phase-shuffled controls with the same power spectrum or empty scanner data. Our results demonstrate that normal cortical activity in healthy human subjects at rest organizes as neuronal avalanches and is well described by a critical branching process. Theory and experiment have shown that such critical, scale-free dynamics optimize information processing. Therefore, our findings imply that the human brain attains an optimal dynamical regime for information processing.


The Journal of Neuroscience | 2013

Fading Signatures of Critical Brain Dynamics during Sustained Wakefulness in Humans

Christian Meisel; Eckehard Olbrich; Oren Shriki; Peter Achermann

Sleep encompasses approximately a third of our lifetime, yet its purpose and biological function are not well understood. Without sleep optimal brain functioning such as responsiveness to stimuli, information processing, or learning may be impaired. Such observations suggest that sleep plays a crucial role in organizing or reorganizing neuronal networks of the brain toward states where information processing is optimized. Increasing evidence suggests that cortical neuronal networks operate near a critical state characterized by balanced activity patterns, which supports optimal information processing. However, it remains unknown whether critical dynamics is affected in the course of wake and sleep, which would also impact information processing. Here, we show that signatures of criticality are progressively disturbed during wake and restored by sleep. We demonstrate that the precise power-laws governing the cascading activity of neuronal avalanches and the distribution of phase-lock intervals in human electroencephalographic recordings are increasingly disarranged during sustained wakefulness. These changes are accompanied by a decrease in variability of synchronization. Interpreted in the context of a critical branching process, these seemingly different findings indicate a decline of balanced activity and progressive distance from criticality toward states characterized by an imbalance toward excitation where larger events prevail dynamics. Conversely, sleep restores the critical state resulting in recovered power-law characteristics in activity and variability of synchronization. These findings support the intriguing hypothesis that sleep may be important to reorganize cortical network dynamics to a critical state thereby assuring optimal computational capabilities for the following time awake.


Frontiers in Systems Neuroscience | 2013

Universal organization of resting brain activity at the thermodynamic critical point

Shan Yu; Hongdian Yang; Oren Shriki; Dietmar Plenz

Thermodynamic criticality describes emergent phenomena in a wide variety of complex systems. In the mammalian cortex, one type of complex dynamics that spontaneously emerges from neuronal interactions has been characterized as neuronal avalanches. Several aspects of neuronal avalanches such as their size and life time distributions are described by power laws with unique exponents, indicating an underlying critical branching process that governs avalanche formation. Here, we show that neuronal avalanches also reflect an organization of brain dynamics close to a thermodynamic critical point. We recorded spontaneous cortical activity in monkeys and humans at rest using high-density intracranial microelectrode arrays and magnetoencephalography, respectively. By numerically changing a control parameter equivalent to thermodynamic temperature, we observed typical critical behavior in cortical activities near the actual physiological condition, including the phase transition of an order parameter, as well as the divergence of susceptibility and specific heat. Finite-size scaling of these quantities allowed us to derive robust critical exponents highly consistent across monkey and humans that uncover a distinct, yet universal organization of brain dynamics. Our results demonstrate that normal brain dynamics at rest resides near or at criticality, which maximizes several aspects of information processing such as input sensitivity and dynamic range.


Cognitive Science | 2012

Spreading Activation in an Attractor Network With Latching Dynamics: Automatic Semantic Priming Revisited

Itamar Lerner; Shlomo Bentin; Oren Shriki

Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified framework for the two approaches. Our models assume a synaptic depression mechanism leading to autonomous transitions between encoded memory patterns (latching dynamics), which account for the major characteristics of automatic semantic priming in humans. Using computer simulations, we demonstrated how findings that challenged attractor-based networks in the past, such as mediated and asymmetric priming, are a natural consequence of our present models dynamics. Puzzling results regarding backward priming were also given a straightforward explanation. In addition, the current model addresses some of the differences between semantic and associative relatedness and explains how these differences interact with stimulus onset asynchrony in priming experiments.


The Journal of Neuroscience | 2015

Near-Critical Dynamics in Stimulus-Evoked Activity of the Human Brain and Its Relation to Spontaneous Resting-State Activity.

Oshrit Arviv; Abraham Goldstein; Oren Shriki

In recent years, numerous studies have found that the brain at resting state displays many features characteristic of a critical state. Here we examine whether stimulus-evoked activity can also be regarded as critical. Additionally, we investigate the relation between resting-state activity and stimulus-evoked activity from the perspective of criticality. We found that cortical activity measured by magnetoencephalography (MEG) is near critical and organizes as neuronal avalanches at both resting-state and stimulus-evoked activities. Moreover, a significantly high intrasubject similarity between avalanche size and duration distributions at both cognitive states was found, suggesting that the distributions capture specific features of the individual brain dynamics. When comparing different subjects, a higher intersubject consistency was found for stimulus-evoked activity than for resting state. This was expressed by the distance between avalanche size and duration distributions of different participants and was supported by the spatial spreading of the avalanches involved. During the course of stimulus-evoked activity, time locked to the stimulus onset, we demonstrate fluctuations in the gain of the neuronal system and thus short timescale deviations from the critical state. Nonetheless, the overall near-critical state in stimulus-evoked activity is retained over longer timescales, in close proximity and with a high correlation to spontaneous (not time-locked) resting-state activity. Spatially, the observed fluctuations in gain manifest through anticorrelative activations of brain sites involved, suggesting a switch between task-negative (default mode) and task-positive networks and assigning the changes in excitation–inhibition balance to nodes within these networks. Overall, this study offers a novel outlook on evoked activity through the framework of criticality. SIGNIFICANCE STATEMENT The organization of stimulus-evoked activity and ongoing cortical activity is a topic of high importance. The article addresses several general questions. What is the spatiotemporal organization of stimulus-evoked cortical activity in healthy human subjects? Are there deviations from excitation–inhibition balance during stimulus-evoked activity? What is the relationship between stimulus-evoked activity and ongoing resting-state activity? Using magnetoencephalography (MEG), we demonstrate that stimulus-evoked activity in humans follows a critical branching process that produces neuronal avalanches. Additionally, we investigate the spatiotemporal relationship between resting-state activity and stimulus-evoked activity from the perspective of critical dynamics. These analyses reveal new aspects of this complex relationship and offer novel insights into the interplay between excitation and inhibition that were not observed previously using conventional approaches.


PLOS ONE | 2012

Excessive Attractor Instability Accounts for Semantic Priming in Schizophrenia

Itamar Lerner; Shlomo Bentin; Oren Shriki

One of the most pervasive findings in studies of schizophrenics with thought disorders is their peculiar pattern of semantic priming, which presumably reflects abnormal associative processes in the semantic system of these patients. Semantic priming is manifested by faster and more accurate recognition of a word-target when preceded by a semantically related prime, relative to an unrelated prime condition. Compared to control, semantic priming in schizophrenics is characterized by reduced priming effects at long prime-target Stimulus Onset Asynchrony (SOA) and, sometimes, augmented priming at short SOA. In addition, unlike controls, schizophrenics consistently show indirect (mediated) priming (such as from the prime ‘wedding’ to the target ‘finger’, mediated by ‘ring’). In a previous study, we developed a novel attractor neural network model with synaptic adaptation mechanisms that could account for semantic priming patterns in healthy individuals. Here, we examine the consequences of introducing attractor instability to this network, which is hypothesized to arise from dysfunctional synaptic transmission known to occur in schizophrenia. In two simulated experiments, we demonstrate how such instability speeds up the network’s dynamics and, consequently, produces the full spectrum of priming effects previously reported in patients. The model also explains the inconsistency of augmented priming results at short SOAs using directly related pairs relative to the consistency of indirect priming. Further, we discuss how the same mechanism could account for other symptoms of the disease, such as derailment (‘loose associations’) or the commonly seen difficulty of patients in utilizing context. Finally, we show how the model can statistically implement the overly-broad wave of spreading activation previously presumed to characterize thought-disorders in schizophrenia.


PLOS Computational Biology | 2012

Fast Coding of Orientation in Primary Visual Cortex

Oren Shriki; Adam Kohn; Maoz Shamir

Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple ‘race to threshold’ readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made.


Frontiers in Psychology | 2014

Internally- and externally-driven network transitions as a basis for automatic and strategic processes in semantic priming: theory and experimental validation

Itamar Lerner; Oren Shriki

For the last four decades, semantic priming—the facilitation in recognition of a target word when it follows the presentation of a semantically related prime word—has been a central topic in research of human cognitive processing. Studies have drawn a complex picture of findings which demonstrated the sensitivity of this priming effect to a unique combination of variables, including, but not limited to, the type of relatedness between primes and targets, the prime-target Stimulus Onset Asynchrony (SOA), the relatedness proportion (RP) in the stimuli list and the specific task subjects are required to perform. Automatic processes depending on the activation patterns of semantic representations in memory and controlled strategies adapted by individuals when attempting to maximize their recognition performance have both been implicated in contributing to the results. Lately, we have published a new model of semantic priming that addresses the majority of these findings within one conceptual framework. In our model, semantic memory is depicted as an attractor neural network in which stochastic transitions from one stored pattern to another are continually taking place due to synaptic depression mechanisms. We have shown how such transitions, in combination with a reinforcement-learning rule that adjusts their pace, resemble the classic automatic and controlled processes involved in semantic priming and account for a great number of the findings in the literature. Here, we review the core findings of our model and present new simulations that show how similar principles of parameter-adjustments could account for additional data not addressed in our previous studies, such as the relation between expectancy and inhibition in priming, target frequency and target degradation effects. Finally, we describe two human experiments that validate several key predictions of the model.


Neuroscience | 2017

Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning

O. Alkoby; A. Abu-Rmileh; Oren Shriki; D. Todder

Despite the success of neurofeedback treatment in many cases, the variability in the efficacy of the treatment is high, and some studies report that a significant proportion of subjects does not benefit from it. Quantifying the extent of this problem is difficult, as many studies do not report the variability among subjects. Nonetheless, the ability to identify in advance those subjects who are - or who are not - likely to benefit from neurofeedback is an important issue, which is only now starting to gain attention. Here, we review the problem of inefficacy in neurofeedback treatment as well as possible psychological and neurophysiological predictors for successful treatment. A possible explanation for treatment ineffectiveness lies in the necessity to adapt the treatment protocol to the individual subject. We therefore discuss the use of personalized neurofeedback protocols as a potential way to reduce the inefficacy problem.

Collaboration


Dive into the Oren Shriki's collaboration.

Top Co-Authors

Avatar

Dietmar Plenz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shlomo Bentin

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Shan Yu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Hongdian Yang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haim Sompolinsky

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Coppola

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge