Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orestis Efthimiou is active.

Publication


Featured researches published by Orestis Efthimiou.


Research Synthesis Methods | 2015

Get Real in Individual Participant Data (IPD) Meta-Analysis: A Review of the Methodology.

Thomas P. A. Debray; Karel G. M. Moons; Gert van Valkenhoef; Orestis Efthimiou; Noemi Hummel; Rolf H.H. Groenwold; Johannes B. Reitsma

Individual participant data (IPD) meta‐analysis is an increasingly used approach for synthesizing and investigating treatment effect estimates. Over the past few years, numerous methods for conducting an IPD meta‐analysis (IPD‐MA) have been proposed, often making different assumptions and modeling choices while addressing a similar research question. We conducted a literature review to provide an overview of methods for performing an IPD‐MA using evidence from clinical trials or non‐randomized studies when investigating treatment efficacy. With this review, we aim to assist researchers in choosing the appropriate methods and provide recommendations on their implementation when planning and conducting an IPD‐MA.


Research Synthesis Methods | 2016

GetReal in network meta-analysis: a review of the methodology.

Orestis Efthimiou; Thomas P. A. Debray; Gert van Valkenhoef; Sven Trelle; Klea Panayidou; Karel G.M. Moons; Johannes B. Reitsma; Aijing Shang; Georgia Salanti

Pairwise meta-analysis is an established statistical tool for synthesizing evidence from multiple trials, but it is informative only about the relative efficacy of two specific interventions. The usefulness of pairwise meta-analysis is thus limited in real-life medical practice, where many competing interventions may be available for a certain condition and studies informing some of the pairwise comparisons may be lacking. This commonly encountered scenario has led to the development of network meta-analysis (NMA). In the last decade, several applications, methodological developments, and empirical studies in NMA have been published, and the area is thriving as its relevance to public health is increasingly recognized. This article presents a review of the relevant literature on NMA methodology aiming to pinpoint the developments that have appeared in the field. Copyright


Biostatistics | 2015

Joint synthesis of multiple correlated outcomes in networks of interventions

Orestis Efthimiou; Dimitris Mavridis; Richard D Riley; Andrea Cipriani; Georgia Salanti

Multiple outcomes multivariate meta-analysis (MOMA) is gaining in popularity as a tool for jointly synthesizing evidence coming from studies that report effect estimates for multiple correlated outcomes. Models for MOMA are available for the case of the pairwise meta-analysis of two treatments for multiple outcomes. Network meta-analysis (NMA) can be used for handling studies that compare more than two treatments; however, there is currently little guidance on how to perform an MOMA for the case of a network of interventions with multiple outcomes. The aim of this paper is to address this issue by proposing two models for synthesizing evidence from multi-arm studies reporting on multiple correlated outcomes for networks of competing treatments. Our models can handle continuous, binary, time-to-event or mixed outcomes, with or without availability of within-study correlations. They are set in a Bayesian framework to allow flexibility in fitting and assigning prior distributions to the parameters of interest while fully accounting for parameter uncertainty. As an illustrative example, we use a network of interventions for acute mania, which contains multi-arm studies reporting on two correlated binary outcomes: response rate and dropout rate. Both multiple-outcomes NMA models produce narrower confidence intervals compared with independent, univariate network meta-analyses for each outcome and have an impact on the relative ranking of the treatments.


Evidence-based Mental Health | 2014

Addressing missing outcome data in meta-analysis

Dimitris Mavridis; Anna Chaimani; Orestis Efthimiou; Stefan Leucht; Georgia Salanti

Objective Missing outcome data are a common problem in clinical trials and systematic reviews, as it compromises inferences by reducing precision and potentially biasing the results. Systematic reviewers often assume that the missing outcome problem has been resolved at the trial level. However, in many clinical trials a complete case analysis or suboptimal imputation techniques are employed and the problem is accumulated in a quantitative synthesis of trials via meta-analysis. The risk of bias due to missing data depends on the missingness mechanism. Most statistical analyses assume missing data to be missing at random, which is an unverifiable assumption. The aim of this paper is to present methods used to account for missing outcome data in a systematic review and meta-analysis. Methods The following methods to handle missing outcome data are presented: (1) complete cases analysis, (2) imputation methods from observed data, (3) best/worst case scenarios, (4) uncertainty interval for the summary estimate and (5) a statistical model that makes assumption about how treatment effects in missing data are connected to those in observed data. Examples are used to illustrate all the methods presented. Results Different methods yield different results. A complete case analysis leads to imprecise and potentially biased results. The best-case/worst-case scenarios give unrealistic estimates, while the uncertainty interval produces very conservative results. Imputation methods that replace missing data with values from the observed data do not properly account for the uncertainty introduced by the unobserved data and tend to underestimate SEs. Employing a statistical model that links treatment effects in missing and observed data, unlike the other methods, reduces the weight assigned to studies with large missing rates. Conclusions Unlike clinical trials, in systematic reviews and meta-analyses we cannot adapt pre-emptive methods to account for missing outcome data. There are statistical techniques implemented in commercial software (eg, STATA) that quantify the departure from the missing at random assumption and adjust results appropriately. A sensitivity analysis with increasingly stringent assumptions on how parameters in the unobserved and observed data are related is a sensible way to evaluate robustness of results.


Statistics in Medicine | 2017

Combining randomized and non-randomized evidence in network meta-analysis

Orestis Efthimiou; Dimitris Mavridis; Thomas P. A. Debray; Myrto Samara; Mark Belger; George C.M. Siontis; Stefan Leucht; Georgia Salanti

Non-randomized studies aim to reveal whether or not interventions are effective in real-life clinical practice, and there is a growing interest in including such evidence in the decision-making process. We evaluate existing methodologies and present new approaches to using non-randomized evidence in a network meta-analysis of randomized controlled trials (RCTs) when the aim is to assess relative treatment effects. We first discuss how to assess compatibility between the two types of evidence. We then present and compare an array of alternative methods that allow the inclusion of non-randomized studies in a network meta-analysis of RCTs: the naïve data synthesis, the design-adjusted synthesis, the use of non-randomized evidence as prior information and the use of three-level hierarchical models. We apply some of the methods in two previously published clinical examples comparing percutaneous interventions for the treatment of coronary in-stent restenosis and antipsychotics in patients with schizophrenia. We discuss in depth the advantages and limitations of each method, and we conclude that the inclusion of real-world evidence from non-randomized studies has the potential to corroborate findings from RCTs, increase precision and enhance the decision-making process. Copyright


Research Synthesis Methods | 2016

GetReal in mathematical modelling: a review of studies predicting drug effectiveness in the real world.

Klea Panayidou; Sandro Gsteiger; Matthias Egger; Gablu Kilcher; Máximo Carreras; Orestis Efthimiou; Thomas P. A. Debray; Sven Trelle; Noemi Hummel

The performance of a drug in a clinical trial setting often does not reflect its effect in daily clinical practice. In this third of three reviews, we examine the applications that have been used in the literature to predict real‐world effectiveness from randomized controlled trial efficacy data. We searched MEDLINE, EMBASE from inception to March 2014, the Cochrane Methodology Register, and websites of key journals and organisations and reference lists. We extracted data on the type of model and predictions, data sources, validation and sensitivity analyses, disease area and software. We identified 12 articles in which four approaches were used: multi‐state models, discrete event simulation models, physiology‐based models and survival and generalized linear models. Studies predicted outcomes over longer time periods in different patient populations, including patients with lower levels of adherence or persistence to treatment or examined doses not tested in trials. Eight studies included individual patient data. Seven examined cardiovascular and metabolic diseases and three neurological conditions. Most studies included sensitivity analyses, but external validation was performed in only three studies. We conclude that mathematical modelling to predict real‐world effectiveness of drug interventions is not widely used at present and not well validated.


BMJ Open | 2016

Cognitive-Behavioural Analysis System of Psychotherapy (CBASP), a drug, or their combination: differential therapeutics for persistent depressive disorder: a study protocol of an individual participant data network meta-analysis

Toshi A. Furukawa; Elisabeth Schramm; Erica Weitz; Georgia Salanti; Orestis Efthimiou; Johannes Michalak; Norio Watanabe; Andrea Cipriani; Martin B. Keller; James H. Kocsis; Daniel N. Klein; Pim Cuijpers

Introduction Despite important advances in psychological and pharmacological treatments of persistent depressive disorders in the past decades, their responses remain typically slow and poor, and differential responses among different modalities of treatments or their combinations are not well understood. Cognitive-Behavioural Analysis System of Psychotherapy (CBASP) is the only psychotherapy that has been specifically designed for chronic depression and has been examined in an increasing number of trials against medications, alone or in combination. When several treatment alternatives are available for a certain condition, network meta-analysis (NMA) provides a powerful tool to examine their relative efficacy by combining all direct and indirect comparisons. Individual participant data (IPD) meta-analysis enables exploration of impacts of individual characteristics that lead to a differentiated approach matching treatments to specific subgroups of patients. Methods and analysis We will search for all randomised controlled trials that compared CBASP, pharmacotherapy or their combination, in the treatment of patients with persistent depressive disorder, in Cochrane CENTRAL, PUBMED, SCOPUS and PsycINFO, supplemented by personal contacts. Individual participant data will be sought from the principal investigators of all the identified trials. Our primary outcomes are depression severity as measured on a continuous observer-rated scale for depression, and dropouts for any reason as a proxy measure of overall treatment acceptability. We will conduct a one-step IPD-NMA to compare CBASP, medications and their combinations, and also carry out a meta-regression to identify their prognostic factors and effect moderators. The model will be fitted in OpenBUGS, using vague priors for all location parameters. For the heterogeneity we will use a half-normal prior on the SD. Ethics and dissemination This study requires no ethical approval. We will publish the findings in a peer-reviewed journal. The study results will contribute to more finely differentiated therapeutics for patients suffering from this chronically disabling disorder. Trial registration number CRD42016035886.


Archive | 2014

Psychological therapies for panic disorder with or without agoraphobia in adults

Alessandro Pompoli; Toshi A. Furukawa; Hissei Imai; Aran Tajika; Orestis Efthimiou; Georgia Salanti

Department of Public Health and Community Medicine, Section of Psychosomatics and Clinical Psychology, University of Verona, Verona, Italy Departments of Health Promotion and Behavior Change and of Clinical Epidemiology, Kyoto University Graduate School of Medicine / School of Public Health, Kyoto, Japan Department of Field Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine / School of Public Health, Kyoto, Japan Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece


Statistical Methods in Medical Research | 2018

An overview of methods for network meta-analysis using individual participant data: when do benefits arise?:

Thomas P. A. Debray; Ewoud Schuit; Orestis Efthimiou; Johannes B. Reitsma; John P. A. Ioannidis; Georgia Salanti; Karel G.M. Moons

Network meta-analysis (NMA) is a common approach to summarizing relative treatment effects from randomized trials with different treatment comparisons. Most NMAs are based on published aggregate data (AD) and have limited possibilities for investigating the extent of network consistency and between-study heterogeneity. Given that individual participant data (IPD) are considered the gold standard in evidence synthesis, we explored statistical methods for IPD-NMA and investigated their potential advantages and limitations, compared with AD-NMA. We discuss several one-stage random-effects NMA models that account for within-trial imbalances, treatment effect modifiers, missing response data and longitudinal responses. We illustrate all models in a case study of 18 antidepressant trials with a continuous endpoint (the Hamilton Depression Score). All trials suffered from drop-out; missingness of longitudinal responses ranged from 21 to 41% after 6 weeks follow-up. Our results indicate that NMA based on IPD may lead to increased precision of estimated treatment effects. Furthermore, it can help to improve network consistency and explain between-study heterogeneity by adjusting for participant-level effect modifiers and adopting more advanced models for dealing with missing response data. We conclude that implementation of IPD-NMA should be considered when trials are affected by substantial drop-out rate, and when treatment effects are potentially influenced by participant-level covariates.


Psychological Medicine | 2018

Dismantling cognitive-behaviour therapy for panic disorder: a systematic review and component network meta-analysis

Alessandro Pompoli; Toshi A. Furukawa; Orestis Efthimiou; Hissei Imai; Aran Tajika; Georgia Salanti

Cognitive-behaviour therapy (CBT) for panic disorder may consist of different combinations of several therapeutic components such as relaxation, breathing retraining, cognitive restructuring, interoceptive exposure and/or in vivo exposure. It is therefore important both theoretically and clinically to examine whether specific components of CBT or their combinations are superior to others in the treatment of panic disorder. Component network meta-analysis (NMA) is an extension of standard NMA that can be used to disentangle the treatment effects of different components included in composite interventions. We searched MEDLINE, EMBASE, PsycINFO and Cochrane Central, with supplementary searches of reference lists and clinical trial registries, for all randomized controlled trials comparing different CBT-based psychological therapies for panic disorder with each other or with control interventions. We applied component NMA to disentangle the treatment effects of different components included in these interventions. After reviewing 2526 references, we included 72 studies with 4064 participants. Interoceptive exposure and face-to-face setting were associated with better treatment efficacy and acceptability. Muscle relaxation and virtual-reality exposure were associated with significantly lower efficacy. Components such as breathing retraining and in vivo exposure appeared to improve treatment acceptability while having small effects on efficacy. The comparison of the most v. the least efficacious combination, both of which may be provided as ‘evidence-based CBT,’ yielded an odds ratio for the remission of 7.69 (95% credible interval: 1.75 to 33.33). Effective CBT packages for panic disorder would include face-to-face and interoceptive exposure components, while excluding muscle relaxation and virtual-reality exposure.

Collaboration


Dive into the Orestis Efthimiou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge