Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ori Brenner is active.

Publication


Featured researches published by Ori Brenner.


The EMBO Journal | 2002

The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons

Ditsa Levanon; David Bettoun; Catherine Harris-Cerruti; Eilon Woolf; Varda Negreanu; Raya Eilam; Yael Bernstein; Dalia Goldenberg; Cuiying Xiao; Manfred Fliegauf; E. Kremer; Florian Otto; Ori Brenner; Aharon Lev-Tov; Yoram Groner

The RUNX transcription factors are important regulators of linage‐specific gene expression in major developmental pathways. Recently, we demonstrated that Runx3 is highly expressed in developing cranial and dorsal root ganglia (DRGs). Here we report that within the DRGs, Runx3 is specifically expressed in a subset of neurons, the tyrosine kinase receptor C (TrkC) proprioceptive neurons. We show that Runx3‐deficient mice develop severe limb ataxia due to disruption of monosynaptic connectivity between intra spinal afferents and motoneurons. We demonstrate that the underlying cause of the defect is a loss of DRG proprioceptive neurons, reflected by a decreased number of TrkC‐, parvalbumin‐ and β‐galactosidase‐positive cells. Thus, Runx3 is a neurogenic TrkC neuron‐specific transcription factor. In its absence, TrkC neurons in the DRG do not survive long enough to extend their axons toward target cells, resulting in lack of connectivity and ataxia. The data provide new genetic insights into the neurogenesis of DRGs and may help elucidate the molecular mechanisms underlying somatosensory‐related ataxia in humans.


Journal of Immunology | 2004

Caspase-8 Serves Both Apoptotic and Nonapoptotic Roles

Tae Bong Kang; Tehila Ben-Moshe; Eugene Varfolomeev; Yael Pewzner-Jung; Nir Yogev; Anna Jurewicz; Ari Waisman; Ori Brenner; Rebecca Haffner; Erika Gustafsson; Parameswaran Ramakrishnan; Tsvee Lapidot; David Wallach

Knockout of caspase-8, a cysteine protease that participates in the signaling for cell death by receptors of the TNF/nerve growth factor family, is lethal to mice in utero. To explore tissue-specific roles of this enzyme, we established its conditional knockout using the Cre/loxP recombination system. Consistent with its role in cell death induction, deletion of caspase-8 in hepatocytes protected them from Fas-induced caspase activation and death. However, application of the conditional knockout approach to investigate the cause of death of caspase-8 knockout embryos revealed that this enzyme also serves cellular functions that are nonapoptotic. Its deletion in endothelial cells resulted in degeneration of the yolk sac vasculature and embryonal death due to circulatory failure. Caspase-8 deletion in bone-marrow cells resulted in arrest of hemopoietic progenitor functioning, and in cells of the myelomonocytic lineage, its deletion led to arrest of differentiation into macrophages and to cell death. Thus, besides participating in cell death induction by receptors of the TNF/nerve growth factor family, caspase-8, apparently independently of these receptors, also mediates nonapoptotic and perhaps even antiapoptotic activities.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis

Eilon Woolf; Cuiying Xiao; Ofer Fainaru; Joseph Lotem; Dalia Rosen; Varda Negreanu; Yael Bernstein; Dalia Goldenberg; Ori Brenner; Gideon Berke; Ditsa Levanon; Yoram Groner

The RUNX transcription factors are important regulators of lineage-specific gene expression. RUNX are bifunctional, acting both as activators and repressors of tissue-specific target genes. Recently, we have demonstrated that Runx3 is a neurogenic transcription factor, which regulates development and survival of proprioceptive neurons in dorsal root ganglia. Here we report that Runx3 and Runx1 are highly expressed in thymic medulla and cortex, respectively, and function in development of CD8 T cells during thymopoiesis. Runx3-deficient (Runx3 KO) mice display abnormalities in CD4 expression during lineage decisions and impairment of CD8 T cell maturation in the thymus. A large proportion of Runx3 KO peripheral CD8 T cells also expressed CD4, and in contrast to wild-type, their proliferation ability was largely reduced. In addition, the in vitro cytotoxic activity of alloimmunized peritoneal exudate lymphocytes was significantly lower in Runx3 KO compared with WT mice. In a compound mutant mouse, null for Runx3 and heterozygous for Runx1 (Runx3-/-;Runx1+/-), all peripheral CD8 T cells also expressed CD4, resulting in a complete lack of single-positive CD8+ T cells in the spleen. The results provide information on the role of Runx3 and Runx1 in thymopoiesis and suggest that both act as transcriptional repressors of CD4 expression during T cell lineage decisions.


The EMBO Journal | 2004

Runx3 regulates mouse TGF-β-mediated dendritic cell function and its absence results in airway inflammation

Ofer Fainaru; Eilon Woolf; Joseph Lotem; Merav Yarmus; Ori Brenner; Dalia Goldenberg; Varda Negreanu; Yael Bernstein; Ditsa Levanon; Steffen Jung; Yoram Groner

Runx3 transcription factor regulates cell lineage decisions in thymopoiesis and neurogenesis. Here we report that Runx3 knockout (KO) mice develop spontaneous eosinophilic lung inflammation associated with airway remodeling and mucus hypersecretion. Runx3 is specifically expressed in mature dendritic cells (DC) and mediates their response to TGF‐β. In the absence of Runx3, DC become insensitive to TGF‐β‐induced maturation inhibition, and TGF‐β‐dependent Langerhans cell development is impaired. Maturation of Runx3 KO DC is accelerated and accompanied by increased efficacy to stimulate T cells and aberrant expression of β2‐integrins. Lung alveoli of Runx3 KO mice accumulate DC characteristic of allergic airway inflammation. Taken together, abnormalities in DC function and subset distribution may constitute the primary immune system defect, which leads to the eosinophilic lung inflammation in Runx3 KO mice. These data may help elucidate the molecular mechanisms underlying the pathogenesis of allergic airway inflammation in humans.


Immunity | 2014

Macrophage-Restricted Interleukin-10 Receptor Deficiency, but Not IL-10 Deficiency, Causes Severe Spontaneous Colitis.

Ehud Zigmond; Biana Bernshtein; Gilgi Friedlander; Catherine Walker; Simon Yona; Ki-Wook Kim; Ori Brenner; Rita Krauthgamer; Chen Varol; Werner Müller; Steffen Jung

Interleukin-10 (IL-10) is a pleiotropic anti-inflammatory cytokine produced and sensed by most hematopoietic cells. Genome-wide association studies and experimental animal models point at a central role of the IL-10 axis in inflammatory bowel diseases. Here we investigated the importance of intestinal macrophage production of IL-10 and their IL-10 exposure, as well as the existence of an IL-10-based autocrine regulatory loop in the gut. Specifically, we generated mice harboring IL-10 or IL-10 receptor (IL-10Rα) mutations in intestinal lamina propria-resident chemokine receptor CX3CR1-expressing macrophages. We found macrophage-derived IL-10 dispensable for gut homeostasis and maintenance of colonic T regulatory cells. In contrast, loss of IL-10 receptor expression impaired the critical conditioning of these monocyte-derived macrophages and resulted in spontaneous development of severe colitis. Collectively, our results highlight IL-10 as a critical homeostatic macrophage-conditioning agent in the colon and define intestinal CX3CR1(hi) macrophages as a decisive factor that determines gut health or inflammation.


Immunity | 2008

Lack of Conventional Dendritic Cells Is Compatible with Normal Development and T Cell Homeostasis, but Causes Myeloid Proliferative Syndrome

Tal Birnberg; Liat Bar-On; Anita Sapoznikov; Michele L. Caton; Luisa Cervantes-Barragan; Divine Makia; Rita Krauthgamer; Ori Brenner; Burkhard Ludewig; Damian Brockschnieder; Dieter Riethmacher; Boris Reizis; Steffen Jung

Dendritic cells are critically involved in the promotion and regulation of T cell responses. Here, we report a mouse strain that lacks conventional CD11c(hi) dendritic cells (cDCs) because of constitutive cell-type specific expression of a suicide gene. As expected, cDC-less mice failed to mount effective T cell responses resulting in impaired viral clearance. In contrast, neither thymic negative selection nor T regulatory cell generation or T cell homeostasis were markedly affected. Unexpectedly, cDC-less mice developed a progressive myeloproliferative disorder characterized by prominent extramedullary hematopoiesis and increased serum amounts of the cytokine Flt3 ligand. Our data identify a critical role of cDCs in the control of steady-state hematopoiesis, revealing a feedback loop that links peripheral cDCs to myelogenesis through soluble growth factors, such as Flt3 ligand.


International Journal of Cancer | 2003

Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts.

Natalia V. Koudinova; Jehonathan H. Pinthus; Alexander Brandis; Ori Brenner; Peter Bendel; Jacob Ramon; Zelig Eshhar; Avigdor Scherz; Yoram Salomon

Small cell carcinoma of the prostate (SCCP), although relatively rare, is the most aggressive variant of prostate cancer, currently with no successful treatment. It was therefore tempting to evaluate the response of this violent malignancy and its bone lesions to Pd‐Bacteriopheophorbide (TOOKAD)‐based photodynamic therapy (PDT), already proven by us to efficiently eradicate other aggressive non‐epithelial solid tumors. TOOKAD is a novel bacteriochlorophyll‐derived, second‐generation photosensitizer recently, developed by us for the treatment of bulky tumors. This photosensitizer is endowed with strong light absorbance (ϵ0 ∼ 105 mol−1 cm−1) in the near infrared region (λ=763nm), allowing deep tissue penetration. The TOOKAD‐PDT protocol targets the tumor vasculature leading to inflammation, hypoxia, necrosis and tumor eradication. The sensitizer clears rapidly from the circulation within a few hours and does not accumulate in tissues, which is compatible with the treatment of localized tumor and isolated metastases. Briefly, male CD1‐nude mice were grafted with the human SCCP (WISH‐PC2) in 3 relevant anatomic locations: subcutaneous (representing tumor mass), intraosseous (representing bone metastases) and orthotopically within the murine prostate microenvironment. The PDT protocol consisted of i.v. administration of TOOKAD (4 mg/kg), followed by immediate illumination (650–800 nm) from a xenon light source or a diode laser emitting at 770 nm. Controls included untreated animals or animals treated with light or TOOKAD alone. Tumor volume, human plasma chromogranin A levels, animal well being and survival were used as end points. In addition, histopathology and immunohistochemistry were used to define the tumor response. Subcutaneous tumors exhibited complete healing within 28–40 days, reaching an overall long‐term cure rate of 69%, followed for 90 days after PDT. Intratibial WISH‐PC2 lesions responded with complete tumor elimination in 50% of the treated mice at 70–90 days after PDT as documented histologically. The response of the orthotopic model was also analyzed histologically with similar results. The study with this model suggests that TOOKAD‐based PDT can reach large tumors and is a feasible, efficient and well‐tolerated approach for minimally invasive treatment of local and disseminated SCCP.


Nature Cell Biology | 2015

ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation

Gabriele D'Uva; Alla Aharonov; Mattia Lauriola; David Kain; Yfat Yahalom-Ronen; Sílvia Carvalho; Karen Weisinger; Elad Bassat; Dana Rajchman; Oren Yifa; Marina Lysenko; Tal Konfino; Julius Hegesh; Ori Brenner; Michal Neeman; Yosef Yarden; Jonathan Leor; Rachel Sarig; Richard P. Harvey; Eldad Tzahor

The murine neonatal heart can regenerate after injury through cardiomyocyte (CM) proliferation, although this capacity markedly diminishes after the first week of life. Neuregulin-1 (NRG1) administration has been proposed as a strategy to promote cardiac regeneration. Here, using loss- and gain-of-function genetic tools, we explore the role of the NRG1 co-receptor ERBB2 in cardiac regeneration. NRG1-induced CM proliferation diminished one week after birth owing to a reduction in ERBB2 expression. CM-specific Erbb2 knockout revealed that ERBB2 is required for CM proliferation at embryonic/neonatal stages. Induction of a constitutively active ERBB2 (caERBB2) in neonatal, juvenile and adult CMs resulted in cardiomegaly, characterized by extensive CM hypertrophy, dedifferentiation and proliferation, differentially mediated by ERK, AKT and GSK3β/β-catenin signalling pathways. Transient induction of caERBB2 following myocardial infarction triggered CM dedifferentiation and proliferation followed by redifferentiation and regeneration. Thus, ERBB2 is both necessary for CM proliferation and sufficient to reactivate postnatal CM proliferative and regenerative potentials.


Journal of Biological Chemistry | 2010

A Critical Role for Ceramide Synthase 2 in Liver Homeostasis II. INSIGHTS INTO MOLECULAR CHANGES LEADING TO HEPATOPATHY

Yael Pewzner-Jung; Ori Brenner; Svantje Braun; Elad L. Laviad; Shifra Ben-Dor; Ester Feldmesser; Shirley Horn-Saban; Daniela Amann-Zalcenstein; Calanit Raanan; Tamara Berkutzki; Racheli Erez-Roman; Oshrit Ben-David; Michal Levy; Dorin Holzman; Hyejung Park; Abraham Nyska; Alfred H. Merrill; Anthony H. Futerman

We have generated a mouse that cannot synthesize very long acyl chain (C22–C24) ceramides (Pewzner-Jung, Y., Park, H., Laviad, E. L., Silva, L. C., Lahiri, S., Stiban, J., Erez-Roman, R., Brugger, B., Sachsenheimer, T., Wieland, F. T., Prieto, M., Merrill, A. H., and Futerman, A. H. (2010) J. Biol. Chem. 285, 10902–10910) due to ablation of ceramide synthase 2 (CerS2). As a result, significant changes were observed in the sphingolipid profile of livers from these mice, including elevated C16-ceramide and sphinganine levels. We now examine the functional consequences of these changes. CerS2 null mice develop severe nonzonal hepatopathy from about 30 days of age, the age at which CerS2 expression peaks in wild type mice, and display increased rates of hepatocyte apoptosis and proliferation. In older mice there is extensive and pronounced hepatocellular anisocytosis with widespread formation of nodules of regenerative hepatocellular hyperplasia. Progressive hepatomegaly and noninvasive hepatocellular carcinoma are also seen from ∼10 months of age. Even though CerS2 is found at equally high mRNA levels in kidney and liver, there are no changes in renal function and no pathological changes in the kidney. High throughput analysis of RNA expression in liver revealed up-regulation of genes associated with cell cycle regulation, protein transport, cell-cell interactions and apoptosis, and down-regulation of genes associated with intermediary metabolism, such as lipid and steroid metabolism, adipocyte signaling, and amino acid metabolism. In addition, levels of the cell cycle regulator, the cyclin dependent-kinase inhibitor p21WAF1/CIP1, were highly elevated, which occurs by at least two mechanisms, one of which may involve p53. We propose a functional rationale for the synthesis of sphingolipids with very long acyl chains in liver homeostasis and in cell physiology.


Nature Cell Biology | 2012

The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells.

Maria Maryanovich; Galia Oberkovitz; Hagit Niv; Lidiya Vorobiyov; Yehudit Zaltsman; Ori Brenner; Tsvee Lapidot; Steffen Jung; Atan Gross

BID, a BH3-only BCL2 family member, functions in apoptosis as well as the DNA-damage response. Our previous data demonstrated that BID is an ATM effector acting to induce cell-cycle arrest and inhibition of apoptosis following DNA damage. Here we show that ATM-mediated BID phosphorylation plays an unexpected role in maintaining the quiescence of haematopoietic stem cells (HSCs). Loss of BID phosphorylation leads to escape from quiescence of HSCs, resulting in exhaustion of the HSC pool and a marked reduction of HSC repopulating potential in vivo. We also demonstrate that BID phosphorylation plays a role in protecting HSCs from irradiation, and that regulating both quiescence and survival of HSCs depends on BID’s ability to regulate oxidative stress. Moreover, loss of BID phosphorylation, ATM knockout or exposing mice to irradiation leads to an increase in mitochondrial BID, which correlates with an increase in mitochondrial oxidative stress. These results show that the ATM–BID pathway serves as a critical checkpoint for coupling HSC homeostasis and the DNA-damage stress response to enable long-term regenerative capacity.

Collaboration


Dive into the Ori Brenner's collaboration.

Top Co-Authors

Avatar

Yoram Groner

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ditsa Levanon

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Varda Negreanu

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Joseph Lotem

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Raya Eilam

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Eilon Woolf

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Steffen Jung

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Alon Harmelin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Dalia Goldenberg

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Merav H. Shamir

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge