Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orion J. Buske is active.

Publication


Featured researches published by Orion J. Buske.


Nucleic Acids Research | 2017

The Human Phenotype Ontology in 2017

Sebastian Köhler; Nicole Vasilevsky; Mark Engelstad; Erin Foster; Julie McMurry; Ségolène Aymé; Gareth Baynam; Susan M. Bello; Cornelius F. Boerkoel; Kym M. Boycott; Michael Brudno; Orion J. Buske; Patrick F. Chinnery; Valentina Cipriani; Laureen E. Connell; Hugh Dawkins; Laura E. DeMare; Andrew Devereau; Bert B.A. de Vries; Helen V. Firth; Kathleen Freson; Daniel Greene; Ada Hamosh; Ingo Helbig; Courtney Hum; Johanna A. Jähn; Roger James; Roland Krause; Stanley J. F. Laulederkind; Hanns Lochmüller

Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.


Human Mutation | 2015

The Matchmaker Exchange: a platform for rare disease gene discovery.

Anthony A. Philippakis; Danielle R. Azzariti; Sergi Beltran; Anthony J. Brookes; Catherine A. Brownstein; Michael Brudno; Han G. Brunner; Orion J. Buske; Knox Carey; Cassie Doll; Sergiu Dumitriu; Stephanie O.M. Dyke; Johan T. den Dunnen; Helen V. Firth; Richard A. Gibbs; Marta Girdea; Michael Gonzalez; Melissa Haendel; Ada Hamosh; Ingrid A. Holm; Lijia Huang; Ben Hutton; Joel B. Krier; Andriy Misyura; Christopher J. Mungall; Justin Paschall; Benedict Paten; Peter N. Robinson; François Schiettecatte; Nara Sobreira

There are few better examples of the need for data sharing than in the rare disease community, where patients, physicians, and researchers must search for “the needle in a haystack” to uncover rare, novel causes of disease within the genome. Impeding the pace of discovery has been the existence of many small siloed datasets within individual research or clinical laboratory databases and/or disease‐specific organizations, hoping for serendipitous occasions when two distant investigators happen to learn they have a rare phenotype in common and can “match” these cases to build evidence for causality. However, serendipity has never proven to be a reliable or scalable approach in science. As such, the Matchmaker Exchange (MME) was launched to provide a robust and systematic approach to rare disease gene discovery through the creation of a federated network connecting databases of genotypes and rare phenotypes using a common application programming interface (API). The core building blocks of the MME have been defined and assembled. Three MME services have now been connected through the API and are available for community use. Additional databases that support internal matching are anticipated to join the MME network as it continues to grow.


Genome Research | 2013

iReckon: Simultaneous isoform discovery and abundance estimation from RNA-seq data

Aziz M. Mezlini; Eric Smith; Marc Fiume; Orion J. Buske; Gleb L. Savich; Sohrab P. Shah; Sam Aparicio; Derek Y. Chiang; Anna Goldenberg; Michael Brudno

High-throughput RNA sequencing (RNA-seq) promises to revolutionize our understanding of genes and their role in human disease by characterizing the RNA content of tissues and cells. The realization of this promise, however, is conditional on the development of effective computational methods for the identification and quantification of transcripts from incomplete and noisy data. In this article, we introduce iReckon, a method for simultaneous determination of the isoforms and estimation of their abundances. Our probabilistic approach incorporates multiple biological and technical phenomena, including novel isoforms, intron retention, unspliced pre-mRNA, PCR amplification biases, and multimapped reads. iReckon utilizes regularized expectation-maximization to accurately estimate the abundances of known and novel isoforms. Our results on simulated and real data demonstrate a superior ability to discover novel isoforms with a significantly reduced number of false-positive predictions, and our abundance accuracy prediction outmatches that of other state-of-the-art tools. Furthermore, we have applied iReckon to two cancer transcriptome data sets, a triple-negative breast cancer patient sample and the MCF7 breast cancer cell line, and show that iReckon is able to reconstruct the complex splicing changes that were not previously identified. QT-PCR validations of the isoforms detected in the MCF7 cell line confirmed all of iReckons predictions and also showed strong agreement (r(2) = 0.94) with the predicted abundances.


Human Mutation | 2015

PhenomeCentral: A Portal for Phenotypic and Genotypic Matchmaking of Patients with Rare Genetic Diseases

Orion J. Buske; Marta Girdea; Sergiu Dumitriu; Bailey Gallinger; Taila Hartley; Heather Trang; Andriy Misyura; Tal Friedman; Chandree L. Beaulieu; William P. Bone; Amanda E. Links; Nicole L. Washington; Melissa Haendel; Peter N. Robinson; Cornelius F. Boerkoel; David Adams; William A. Gahl; Kym M. Boycott; Michael Brudno

The discovery of disease‐causing mutations typically requires confirmation of the variant or gene in multiple unrelated individuals, and a large number of rare genetic diseases remain unsolved due to difficulty identifying second families. To enable the secure sharing of case records by clinicians and rare disease scientists, we have developed the PhenomeCentral portal (https://phenomecentral.org). Each record includes a phenotypic description and relevant genetic information (exome or candidate genes). PhenomeCentral identifies similar patients in the database based on semantic similarity between clinical features, automatically prioritized genes from whole‐exome data, and candidate genes entered by the users, enabling both hypothesis‐free and hypothesis‐driven matchmaking. Users can then contact other submitters to follow up on promising matches. PhenomeCentral incorporates data for over 1,000 patients with rare genetic diseases, contributed by the FORGE and Care4Rare Canada projects, the US NIH Undiagnosed Diseases Program, the EU Neuromics and ANDDIrare projects, as well as numerous independent clinicians and scientists. Though the majority of these records have associated exome data, most lack a molecular diagnosis. PhenomeCentral has already been used to identify causative mutations for several patients, and its ability to find matching patients and diagnose these diseases will grow with each additional patient that is entered.


Nature Protocols | 2015

Next-generation diagnostics and disease-gene discovery with the Exomiser

Damian Smedley; Julius Jacobsen; Marten Jäger; Sebastian Köhler; Manuel Holtgrewe; Max Schubach; Enrico Siragusa; Tomasz Zemojtel; Orion J. Buske; Nicole L. Washington; William P. Bone; Melissa Haendel; Peter N. Robinson

Exomiser is an application that prioritizes genes and variants in next-generation sequencing (NGS) projects for novel disease-gene discovery or differential diagnostics of Mendelian disease. Exomiser comprises a suite of algorithms for prioritizing exome sequences using random-walk analysis of protein interaction networks, clinical relevance and cross-species phenotype comparisons, as well as a wide range of other computational filters for variant frequency, predicted pathogenicity and pedigree analysis. In this protocol, we provide a detailed explanation of how to install Exomiser and use it to prioritize exome sequences in a number of scenarios. Exomiser requires ∼3 GB of RAM and roughly 15–90 s of computing time on a standard desktop computer to analyze a variant call format (VCF) file. Exomiser is freely available for academic use from http://www.sanger.ac.uk/science/tools/exomiser.


Genetics in Medicine | 2016

Computational evaluation of exome sequence data using human and model organism phenotypes improves diagnostic efficiency.

William P. Bone; Nicole L. Washington; Orion J. Buske; David Adams; Joie Davis; David D. Draper; Elise Flynn; Marta Girdea; Rena Godfrey; Gretchen Golas; Catherine Groden; Julius Jacobsen; Sebastian Köhler; Elizabeth M.J. Lee; Amanda E. Links; Thomas C. Markello; Christopher J. Mungall; Michele E. Nehrebecky; Peter N. Robinson; Murat Sincan; Ariane Soldatos; Cynthia J. Tifft; Camilo Toro; Heather Trang; Elise Valkanas; Nicole Vasilevsky; Colleen Wahl; Lynne A. Wolfe; Cornelius F. Boerkoel; Michael Brudno

Purpose:Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles.Methods:Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease–gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein–protein association neighbors.Results:Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease–gene associations and ranked the correct seeded variant in up to 87% when detectable disease–gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation.Conclusion:Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders.Genet Med 18 6, 608–617.


Human Mutation | 2015

The Matchmaker Exchange API: automating patient matching through the exchange of structured phenotypic and genotypic profiles.

Orion J. Buske; François Schiettecatte; Benjamin Hutton; Sergiu Dumitriu; Andriy Misyura; Lijia Huang; Taila Hartley; Marta Girdea; Nara Sobreira; Christopher J. Mungall; Michael Brudno

Despite the increasing prevalence of clinical sequencing, the difficulty of identifying additional affected families is a key obstacle to solving many rare diseases. There may only be a handful of similar patients worldwide, and their data may be stored in diverse clinical and research databases. Computational methods are necessary to enable finding similar patients across the growing number of patient repositories and registries. We present the Matchmaker Exchange Application Programming Interface (MME API), a protocol and data format for exchanging phenotype and genotype profiles to enable matchmaking among patient databases, facilitate the identification of additional cohorts, and increase the rate with which rare diseases can be researched and diagnosed. We designed the API to be straightforward and flexible in order to simplify its adoption on a large number of data types and workflows. We also provide a public test data set, curated from the literature, to facilitate implementation of the API and development of new matching algorithms. The initial version of the API has been successfully implemented by three members of the Matchmaker Exchange and was immediately able to reproduce previously identified matches and generate several new leads currently being validated. The API is available at https://github.com/ga4gh/mme‐apis.


Nature Structural & Molecular Biology | 2016

Lactase nonpersistence is directed by DNA-variation-dependent epigenetic aging

Viviane Labrie; Orion J. Buske; Edward Oh; Richie Jeremian; Carolyn Ptak; Giedrius Gasiūnas; Almantas Maleckas; Rūta Petereit; Aida Žvirbliene; Kęstutis Adamonis; Edita Kriukienė; Karolis Koncevičius; Juozas Gordevičius; Akhil Nair; Aiping Zhang; Sasha Ebrahimi; Gabriel Oh; Virginijus Siksnys; Michael Brudno; Arturas Petronis

The inability to digest lactose, due to lactase nonpersistence, is a common trait in adult mammals, except in certain human populations that exhibit lactase persistence. It is not known how the lactase gene is dramatically downregulated with age in most individuals but remains active in some individuals. We performed a comprehensive epigenetic study of human and mouse small intestines, by using chromosome-wide DNA-modification profiling and targeted bisulfite sequencing. Epigenetically controlled regulatory elements accounted for the differences in lactase mRNA levels among individuals, intestinal cell types and species. We confirmed the importance of these regulatory elements in modulating lactase mRNA levels by using CRISPR–Cas9-induced deletions. Genetic factors contribute to epigenetic changes occurring with age at the regulatory elements, because lactase-persistence and lactase-nonpersistence DNA haplotypes demonstrated markedly different epigenetic aging. Thus, genetic factors enable a gradual accumulation of epigenetic changes with age, thereby influencing phenotypic outcome.


Current protocols in human genetics | 2017

UNIT 9.31 Matchmaker Exchange

Nara Sobreira; Harindra Arachchi; Orion J. Buske; Jessica X. Chong; Ben Hutton; Julia Foreman; François Schiettecatte; Tudor Groza; Julius Jacobsen; Melissa Haendel; Kym M. Boycott; Ada Hamosh; Heidi L. Rehm

In well over half of the individuals with rare disease who undergo clinical or research next‐generation sequencing, the responsible gene cannot be determined. Some reasons for this relatively low yield include unappreciated phenotypic heterogeneity; locus heterogeneity; somatic and germline mosaicism; variants of uncertain functional significance; technically inaccessible areas of the genome; incorrect mode of inheritance investigated; and inadequate communication between clinicians and basic scientists with knowledge of particular genes, proteins, or biological systems. To facilitate such communication and improve the search for patients or model organisms with similar phenotypes and variants in specific candidate genes, we have developed the Matchmaker Exchange (MME). MME was created to establish a federated network connecting databases of genomic and phenotypic data using a common application programming interface (API). To date, seven databases can exchange data using the API (GeneMatcher, PhenomeCentral, DECIPHER, MyGene2, matchbox, Australian Genomics Health Alliance Patient Archive, and Monarch Initiative; the latter included for model organism matching). This article guides usage of the MME for rare disease gene discovery.


BMC Bioinformatics | 2011

Variant detection and the Autism sequencing project

Orion J. Buske; Misko Dzamba; Justin Foong; Lynette Lau; Marc Fiume; Christian R. Marshall; Susan Walker; Aparna Prasad; Michael Brudno

Background Early detection of autism can improve the quality of life of affected individuals [1]. Qualitative screening methods continue to improve, but still suffer from low sensitivity despite increasing specificity [2,3]. In collaboration with the Hospital for Sick Children, we are sequencing the exomes of 1 000 individuals with autism in order to discover genetic variants associated with the disorder. Discovery of associated variants can lead to earlier diagnosis and treatment.

Collaboration


Dive into the Orion J. Buske's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Mungall

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Hutton

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cornelius F. Boerkoel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nara Sobreira

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nicole L. Washington

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge